航空学报 > 2018, Vol. 39 Issue (11): 222322-222330   doi: 10.7527/S1000-6893.2018.22322

循环加载下复合推进剂的能量耗散

童心1, 陈雄1, 许进升1, 杜红英2, 周长省1   

  1. 1. 南京理工大学 机械工程学院, 南京 210094;
    2. 晋西工业集团有限责任公司 技术中心, 太原 030027
  • 收稿日期:2018-05-11 修回日期:2018-06-19 出版日期:2018-11-15 发布日期:2018-07-20
  • 通讯作者: 许进升 E-mail:xujinsheng@njust.edu.cn
  • 基金资助:
    国家自然科学基金(51606098);江苏省研究生科研创新计划项目(KYCX18_0452)

Energy dissipation of composite propellant under cyclic loading

TONG Xin1, CHEN Xiong1, XU Jinsheng1, DU Hongying2, ZHOU Changsheng1   

  1. 1. School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China;
    2. Technology Center, Jinxi Industries Group Corporation, Taiyuan 030027, China
  • Received:2018-05-11 Revised:2018-06-19 Online:2018-11-15 Published:2018-07-20
  • Supported by:
    National Natural Science Foundation of China (51606098); Postgraduate Research Innovation Program of Jiangsu Province (KYCX18_0452)

摘要: 在空空导弹的挂载飞行阶段,弹体高频振动导致的固体推进剂温升极大地损害了固体火箭发动机的性能。为深入探究固体推进剂的能量耗散及其影响因素,针对某复合推进剂进行了不同应变幅值下的多频率疲劳测试,并利用非接触式红外辐射装置同步采集了循环加载下推进剂试件的表面温度,讨论了频率、应变幅值两个因素对复合推进剂能量耗散的影响。结果发现,复合推进剂由于自身的黏滞性,在外部激励下产生了剧烈的疲劳生热行为,其能量耗散密度随着加载幅值和频率的增大而提高,能量耗散带来的试件表面温度呈现出先增大后稳定的规律。根据能量耗散和温度场方程,建立了复合推进剂疲劳过程中的温升计算模型,利用有限元仿真对不同加载条件下推进剂的滞后温升进行了较好的预测。

关键词: 空空导弹, 循环载荷, 复合推进剂, 能量耗散, 滞后温升

Abstract: During the flight period of air-to-air missiles, the temperature rise of the solid propellant caused by high-frequency vibration greatly impairs the performance of the solid rocket motor. To investigate the energy dissipation of the solid propellant and its influencing factors, multi-frequency fatigue tests of a composite propellant at different strain amplitudes were carried out. The surface temperature of the solid propellant specimen under cyclic loading was simultaneously monitored by non-contact infrared camera device. The effects of frequency and strain amplitude on the energy dissipation of the composite propellant were then discussed. The results show that, due to its viscosity, the composite propellant generates a lot of heat under external excitation, and its density of energy dissipation increases with the increase of loading amplitude and frequency. The surface temperature of the specimen due to energy dissipation increases at the first cycles and then stabilizes. Based on the equations of energy dissipation and temperature field, a model for calculating the temperature rise during fatigue of the composite propellant is established, and the hysteretic temperature rise of the composite propellant under different loading conditions is well predicted via finite element simulation.

Key words: air-to-air missile, cyclic loading, composite propellant, energy dissipation, hysteretic temperature rise

中图分类号: