[1] 张艳辉, 史明丽. 空空导弹工作温度分析[J]. 装备环境工程, 2015, 12(2): 99-103. ZHANG Y H, SHI M L. Analysis on operating temperature for air-to-air missiles[J]. Equipment Environmental Engineering, 2015, 12(2): 99-103 (in Chinese). [2] SUN C, XU J, CHEN X, et al. Strain rate and temperature dependence of the compressive behavior of a composite modified double-base propellant[J]. Mechanics of Materials, 2015, 89: 35-46. [3] RASMUSSEN B, FREDERICK R A. Nonlinear heterogeneous model of composite solid-propellant combustion[J]. Journal of Propulsion & Power, 2015, 18(5): 1086-1092. [4] TONG X, CHEN X, XU J, et al. Excitation of thermal dissipation of solid propellants during the fatigue process[J]. Materials & Design, 2017, 128: 47-55. [5] XU J, CHEN X, WANG H L, et al. Thermo-damage-viscoelastic constitutive model of HTPB composite propellant[J]. International Journal of Solids and Structures, 2014, 51(18): 3209-3217. [6] JIA D, ZHENG J, CHEN X, et al. Modeling the temperature-dependent mode I fracture behavior of adhesively bonded joints[J]. Journal of Adhesion, 2016, 93(6): 481-503. [7] 邢耀国, 曲凯, 许俊松, 等. 舰船摇摆条件下固体火箭发动机舰载寿命预估[J]. 推进技术, 2011, 32(1): 32-35. XING Y G, QU K, XU J S, et al. Life prediction of shipborne solid rocket motor under the ship swing motion[J]. Journal of Propulsion Technology, 2011, 32(1): 32-35 (in Chinese). [8] 高艳宾, 许进升, 陈雄, 等. 应变控制下NEPE推进剂非线性疲劳损伤[J]. 航空动力学报, 2015, 30(6): 1486-1491. GAO Y B, XU J S, CHEN X, et al. Nonlinear fatigue damage of nitrate ester plasticized polyether propellant for strain-control[J]. Journal of Aerospace Power, 2015, 30(6): 1486-1491 (in Chinese). [9] 梁蔚, 童心, 许进升, 等. 循环载荷下HTPB推进剂温度演化及疲劳性能预测[J]. 含能材料, 2018, 26(4): 301-310. LIANG W, TONG X, XU J S, et al. Temperature evo-lution and fatigue properties prediction of HTPB propellant under cyclic loading[J]. Chinese Journal of Energetic Materials, 2018, 26(4): 301-310 (in Chinese). [10] 王为清, 杨立, 范春利, 等. 金属材料低周疲劳生热的有限元数值模拟[J]. 机械工程学报, 2013, 49(4): 64-69. WANG W Q, YANG L, FAN C L. Finite element analysis of heat production of metals during low-cycle fatigue process[J]. Journal of Mechanical Engineering, 2013, 49(4): 64-69 (in Chinese). [11] ALLEN D H. Thermomechanical coupling in inelastic solids[J]. Applied Mechanics Reviews, 1991, 44(8): 361-373. [12] RITTEL D, RABIN Y. An investigation of the heat generated during cyclic loading of two glassy polymers. Part Ⅱ: Thermal analysis[J]. Mechanics of Materials, 2000, 32(3): 149-159. [13] GUO Q, ZARI F, GUO X. A thermo-viscoelastic-damage constitutive model for cyclically loaded rubbers. Part I: Model formulation and numerical examples[J]. International Journal of Plasticity, 2018, 101: 106-124. [14] BENAARBIA A, CHRYSOCHOOS A, ROBERT G. Kinetics of stored and dissipated energies associated with cyclic loadings of dry polyamide 6.6 specimens[J]. Polymer Testing, 2014, 34: 155-167. [15] BOTELLA R, PÉREZ-JIMÉNEZ F E, RIAHI E, et al. Self-heating and other reversible phenomena in cyclic testing of bituminous materials[J]. Construction and Building Materials, 2017, 156: 809-818. [16] LAHUERTA F, NIJSSEN R P L, VAN DER MEER F P, et al. Experimental-computational study towards heat generation in thick laminates under fatigue loading[J]. International Journal of Fatigue, 2015, 80: 121-127. [17] SURESH S. Fatigue of materials[M]. Cambridge: Cambridge University Press, 1998: 50-52. [18] 童心, 王永平, 许进升, 等. HTPB推进剂的低温疲劳特性[J]. 航空动力学报, 2017, 32(5): 1234-1240. TONG X, WANG Y P, XU J S, et al. Fatigue properties of HTPB propellant at low temperature[J]. Journal of Aerospace Power, 2017, 32(5): 1234-1240 (in Chinese). [19] 何曼君, 陈维孝, 董西侠. 高分子物理[M]. 3版. 上海: 复旦大学出版社, 2014: 1-10. HE M J, CHEN W X, DONG X X. Polymer physics[M]. 3rd ed. Shanghai: Fudan University Press, 2014: 1-10 (in Chinese). [20] ZENER C. Elasticity and anelasticity of metals[M]. Chicago, IL: University of Chicago Press, 1948: 22-30. [21] RITTEL D. An investigation of the heat generated during cyclic loading of two glassy polymers. Part I: Experimental[J]. Mechanics of Materials, 2000, 32(3): 131-147. [22] ZHANG Y, YOU Y, MOUMNI Z, et al. Experimental and theoretical investigation of the frequency effect on low cycle fatigue of shape memory alloys[J]. International Journal of Plasticity, 2017, 90: 1-30. [23] QIUSHI L I, LYU Y, PAN T, et al. Development of a coupled supersonic inlet-fan Navier-Stokes simulation method[J]. Chinese Journal of Aeronautics, 2018, 31(2): 237-246. |