廖文和1,2, 田威1, 李波1, 李鹏程1, 张苇1, 李宇飞1
收稿日期:
2022-03-10
修回日期:
2022-03-18
发布日期:
2022-04-12
通讯作者:
廖文和
E-mail:cnwho@nuaa.edu.cn
基金资助:
LIAO Wenhe1,2, TIAN Wei1, LI Bo1, LI Pengcheng1, ZHANG Wei1, LI Yufei1
Received:
2022-03-10
Revised:
2022-03-18
Published:
2022-04-12
Supported by:
摘要: 当今工业机器人加工技术越来越多地被应用于航空、航天、高铁、船舶等高端制造领域中的制孔、铆接、铣削、磨削等工艺。然而,由于工业机器人定位精度低限制了其自身发展及其在高精制造业中的进一步应用;因此,开展机器人精度补偿技术研究对提高机器人定位精度十分重要。对工业机器人精度补偿技术的研究现状进行综述,分析了机器人的定位误差来源,梳理了当前在提高机器人定位精度方面的研究方法和技术以及目前的应用进展,总结了未来工业机器人定位精度提升方法的趋势,可为工业机器人在制造业的应用发展提供指导。
中图分类号:
廖文和, 田威, 李波, 李鹏程, 张苇, 李宇飞. 机器人精度补偿技术与应用进展[J]. 航空学报, 2022, 43(5): 627142-627142.
LIAO Wenhe, TIAN Wei, LI Bo, LI Pengcheng, ZHANG Wei, LI Yufei. Error compensation technology and its application progress of an industrial robot[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 627142-627142.
[1] 丰飞, 杨海涛, 唐丽娜, 等. 大尺度构件重载高精加工机器人本体设计与性能提升关键技术[J]. 中国机械工程, 2021, 32(19):2269-2287. FENG F, YANG H T, TANG L N, et al. Key technologies of design and performance improvement of heavy-duty and high precision machining robot bodies for large-scale components[J]. China Mechanical Engineering, 2021, 32(19):2269-2287(in Chinese). [2] 陶永, 王田苗, 刘辉, 等. 智能机器人研究现状及发展趋势的思考与建议[J]. 高技术通讯, 2019, 29(2):149-163. TAO Y, WANG T M, LIU H, et al. Insights and suggestions on the current situation and development trend of intelligent robots[J]. Chinese High Technology Letters, 2019, 29(2):149-163(in Chinese). [3] 赵杰. 国产工业机器人研究热点[J]. 测控技术, 2018, 37(10):1-2. ZHAO J. Research hotspot of domestic industrial robot[J]. Measurement & Control Technology, 2018, 37(10):1-2(in Chinese). [4] 任永杰, 尹仕斌, 邾继贵. 面向现代柔性制造的工业机器人高精度控制方法[J]. 航空制造技术, 2018, 61(5):16-21. REN Y J, YIN S B, ZHU J G. High precision control method of industrial robot for modern flexible manufacturing[J]. Aeronautical Manufacturing Technology, 2018, 61(5):16-21(in Chinese). [5] 田威, 程思渺, 李波, 等. 考虑关节回差的工业机器人精度补偿方法[J]. 航空学报, 2022, 43(5):625569. TIAN W, CHENG S M, LI B, et al. An error compensation method of an industrial robot with joint backlash[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5):625569(in Chinese). [6] 何晓煦, 田威, 曾远帆, 等. 面向飞机装配的机器人定位误差和残差补偿[J]. 航空学报, 2017, 38(4):420538. HE X X, TIAN W, ZENG Y F, et al. Robot positioning error and residual error compensation for aircraft assembly[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):420538(in Chinese). [7] ZENG Y F, TIAN W, LIAO W H. Positional error similarity analysis for error compensation of industrial robots[J]. Robotics and Computer-Integrated Manufacturing, 2016, 42:113-120. [8] ROTH Z, MOORING B, RAVANI B. An overview of robot calibration[J]. IEEE Journal on Robotics and Automation, 1987, 3(5):377-385. [9] GONG C H, YUAN J X, NI J. Nongeometric error identification and compensation for robotic system by inverse calibration[J]. International Journal of Machine Tools and Manufacture, 2000, 40(14):2119-2137. [10] RENDERS J M, ROSSIGNOL E, BECQUET M, et al. Kinematic calibration and geometrical parameter identification for robots[J]. IEEE Transactions on Robotics and Automation, 1991, 7(6):721-732. [11] WHITNEY D E, LOZINSKI C A, ROURKE J M. Industrial robot forward calibration method and results[J]. Journal of Dynamic Systems, Measurement, and Control, 1986, 108(1):1-8. [12] NUBIOLA A, BONEV I A. Absolute calibration of an ABB IRB 1600 robot using a laser tracker[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(1):236-245. [13] COLLINS C L, ROBINSON M L. Accuracy analysis and validation of the Mars science laboratory (MSL) robotic arm[C]//Proceedings of ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2014. [14] JUDD R, KNASINSKI A. A technique to calibrate industrial robots with experimental verification[C]//Proceedings 1987 IEEE International Conference on Robotics and Automation, 1987, 4:351-357. [15] SHIAKOLAS P S, CONRAD K L, YIH T C. On the accuracy, repeatability, and degree of influence of kinematics parameters for industrial robots[J]. International Journal of Modelling and Simulation, 2002, 22(4):245-254. [16] CHEN J, CHAO L M. Positioning error analysis for robot manipulators with all rotary joints[J]. IEEE Journal on Robotics and Automation, 1987, 3(6):539-545. [17] ELATTA A Y, GEN L P, ZHI F L, et al. An overview of robot calibration[J]. Information Technology Journal, 2003, 3(1):74-78. [18] 黄松, 胡晓兵, 周飞, 等. 关节机器人定位精度影响因素分析[J]. 机械, 2014, 41(4):70-74. HUANG S, HU X B, ZHOU F, et al. Analysis of the factors affecting the precision of robot localization[J]. Machinery, 2014, 41(4):70-74(in Chinese). [19] LUNCANU A, GHEORGHE S. The influence of reference position deviation on industrial robots positioning precision[J]. IOP Conference Series:Materials Science and Engineering, 2018, 400:052004. [20] CORDES M, HINTZE W. Offline simulation of path deviation due to joint compliance and hysteresis for robot machining[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1-4):1075-1083. [21] 王志军, 刘璐, 李占贤, 等. 基于六维力传感器的机器人动态力补偿研究[J]. 机械设计, 2020, 37(11):72-77. WANG Z J, LIU L, LI Z X, et al. Research on dynamic force compensation of robots based on the six-dimensional force sensor[J]. Journal of Machine Design, 2020, 37(11):72-77(in Chinese). [22] 张铁, 胡亮亮, 邹焱飚. 基于混合遗传算法的机器人改进摩擦模型辨识[J]. 浙江大学学报(工学版), 2021, 55(5):801-809, 854. ZHANG T, HU L L, ZOU Y B. Identification of improved friction model for robot based on hybrid genetic algorithm[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(5):801-809, 854(in Chinese). [23] ERKAYA S. Investigation of joint clearance effects on welding robot manipulators[J]. Robotics and Computer-Integrated Manufacturing, 2012, 28(4):449-457. [24] WU W D, RAO S S. Uncertainty analysis and al-location of joint tolerances in robot manipulators based on interval analysis[J]. Reliability Engineering & System Safety, 2007, 92(1):54-64. [25] 王铁军. 基于ADAMS的串联机器人运动可靠性仿真[D]. 沈阳:东北大学, 2006. WANG T J. Motion reliability simulation based on ADAMS of a serial-link robot[D]. Shenyang:Northeastern University, 2006(in Chinese). [26] MESSAY T, ORDÓÑEZ R, MARCIL E. Computationally efficient and robust kinematic calibration methodologies and their application to industrial robots[J]. Robotics and Computer-Integrated Manufacturing, 2016, 37:33-48. [27] WANG L F, WANG T M, TANG P F, et al. A new hand-eye calibration approach for fracture reduction robot[J]. Computer Assisted Surgery (Abingdon, England), 2017, 22(sup1):113-119. [28] 齐俊德, 张定华, 李山, 等. 考虑测量空间的机器人绝对定位精度标定[J]. 机械科学与技术, 2020, 39(1):68-73. QI J D, ZHANG D H, LI S, et al. Calibration of absolute positioning accuracy of robots considering measurement space[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(1):68-73(in Chinese). [29] DENAVIT J, HARTENBERG R S. A kinematic notation for lower-pair mechanisms based on matrices[J]. Journal of Applied Mechanics, 1955, 22(2):215-221. [30] HARTENBURG R S, DENAVIT J, FREUDENSTEIN F. Kinematic synthesis of linkages[J]. Journal of Applied Mechanics, 1965, 32(2):477. [31] HAYATI S, MIRMIRANI M. Improving the absolute positioning accuracy of robot manipulators[J]. Journal of Robotic Systems, 1985, 2(4):397-413. [32] HAYATI S A. Robot arm geometric link parameter estimation[C]//The 22nd IEEE Conference on Decision and Control, 1983:1477-1483. [33] ALICI G, SHIRINZADEH B. A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing[J]. Mechanism and Machine Theory, 2005, 40(8):879-906. [34] STONE H, SANDERSON A. A prototype arm signature identification system[C]//Proceedings of 1987 IEEE International Conference on Robotics and Automation, 1987:175-182. [35] STONE H, SANDERSON A, NEUMAN C. Arm signature identification[C]//Proceedings of 1986 IEEE International Conference on Robotics and Automation, 1986:41-48. [36] STONE H W, SANDERSON A C. Statistical performance evaluation of the S-model arm signature identification technique[C]//Proceedings of 1988 IEEE International Conference on Robotics and Automation, 1988:939-946. [37] ZHUANG H, ROTH Z S, HAMANO F. A complete and parametrically continuous kinematic model for robot manipulators[J]. IEEE Transactions on Robotics and Automation, 1992, 8(4):451-463. [38] KAZEROUNIAN K, QIAN G Z. Kinematic calibration of robotic manipulators[J]. Journal of Mechanisms, Transmissions, and Automation in Design, 1989, 111(4):482-487. [39] GUPTA K C. Kinematic analysis of manipulators using the zero reference position description[J]. The International Journal of Robotics Research, 1986, 5(2):5-13. [40] OKAMURA K, PARK F C. Kinematic calibration using the product of exponentials formula[J]. Robotica, 1996, 14(4):415-421. [41] CHEN I M, YANG G L, TAN C T, et al. Local POE model for robot kinematic calibration[J]. Mechanism and Machine Theory, 2001, 36(11-12):1215-1239. [42] OH Y T. Robot accuracy evaluation using a ball-bar link system[J]. Robotica, 2011, 29(6):917-927. [43] SANTOLARIA J, CONTE J, GINÉS M. Laser tracker-based kinematic parameter calibration of industrial robots by improved CPA method and active retroreflector[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(9-12):2087-2106. [44] 周炜, 廖文和, 田威. 基于空间插值的工业机器人精度补偿方法理论与试验[J]. 机械工程学报, 2013, 49(3):42-48. ZHOU W, LIAO W H, TIAN W. Theory and experiment of industrial robot accuracy compensation method based on spatial interpolation[J]. Journal of Mechanical Engineering, 2013, 49(3):42-48(in Chinese). [45] FRACZEK J, BUSKO Z. Calibration of multi-robot system without and under load using electronic theodolites[C]//Proceedings of the First Workshop on Robot Motion and Control. RoMoCo'99(Cat. No.99EX353), 1999:71-75. [46] DRIELS M R, SWAYZE W, POTTER S. Full-pose calibration of a robot manipulator using a coordinate-measuring machine[J]. The International Journal of Advanced Manufacturing Technology, 1993, 8(1):34-41. [47] LIGHTCAP C, HAMNER S, SCHMITZ T, et al. Improved positioning accuracy of the PA10-6CE robot with geometric and flexibility calibration[J]. IEEE Transactions on Robotics, 2008, 24(2):452-456. [48] BAI Y, ZHUANG H Q, ROTH Z S. Experiment study of PUMA robot calibration using a laser tracking system[C]//Proceedings of the 2003 IEEE International Workshop on Soft Computing in Industrial Applications, 2003:139-144. [49] BORM J-H, MENG C-H. Determination of optimal measurement configurations for robot calibration based on observability measure[J]. The International Journal of Robotics Research, 1991, 10(1):51-63. [50] JOUBAIR A, BONEV I A. Comparison of the efficiency of five observability indices for robot calibration[J]. Mechanism and Machine Theory, 2013, 70:254-265. [51] ZHUANG H Q, WU J, HUANG W Z. Optimal planning of robot calibration experiments by genetic algorithms[C]//Proceedings of IEEE International Conference on Robotics and Automation, 1996:981-986. [52] ZHUANG H Q, WANG K, ROTH Z S. Optimal selection of measurement configurations for robot calibration using simulated annealing[C]//Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994:393-398. [53] 丁学亮. Staubli工业机器人标定算法和实验研究[D]. 杭州:浙江理工大学, 2014. DING X L. Research on Staubli industrial robot calibration algorithm and experimental verification[D]. Hangzhou:Zhejiang Sci-Tech University, 2014(in Chinese). [54] 曾远帆, 廖文和, 田威. 面向精度补偿的工业机器人采样点多目标优化[J]. 机器人, 2017, 39(2):239-248. ZENG Y F, LIAO W H, TIAN W. Multi-objective optimization of samples for industrial robot error compensation[J]. Robot, 2017, 39(2):239-248(in Chinese). [55] 洪鹏, 田威, 梅东棋, 等. 空间网格化的机器人变参数精度补偿技术[J]. 机器人, 2015, 37(3):327-335. HONG P, TIAN W, MEI D Q, et al. Robotic variable parameter accuracy compensation using space grid[J]. Robot, 2015, 37(3):327-335(in Chinese). [56] MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2):431-441. [57] MOTTA J M S T, DE CARVALHO G C, MCMASTER R S. Robot calibration using a 3D vision-based measurement system with a single camera[J]. Robotics and Computer-Integrated Manufacturing, 2001, 17(6):487-497. [58] GINANI L S, MOTTA J M S T. Theoretical and practical aspects of robot calibration with experimental verification[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2011, 33(1):15-21. [59] PARK I W, LEE B J, CHO S H, et al. Laser-based kinematic calibration of robot manipulator using differential kinematics[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(6):1059-1067. [60] OMODEI A, LEGNANI G, ADAMINI R. Calibration of a measuring robot:experimental results on a 5 DOF structure[J]. Journal of Robotic Systems, 2001, 18(5):237-250. [61] ZHONG X L, LEWIS J M. A new method for autonomous robot calibration[C]//Proceedings of 1995 IEEE International Conference on Robotics and Automation, 1995:1790-1795. [62] ZHONG X L, LEWIS J, N-NAGY F L. Inverse robot calibration using artificial neural networks[J]. Engineering Applications of Artificial Intelligence, 1996, 9(1):83-93. [63] JANG J H, KIM S H, KWAK Y K. Calibration of geometric and non-geometric errors of an industrial robot[J]. Robotica, 2001, 19(3):311-321. [64] DEVLIEG R, SZALLAY T. Applied accurate robotic drilling for aircraft fuselage[J]. SAE International Journal of Aerospace, 2010, 3(1):180-186. [65] DEVLIEG R, SZALLAY T. Improved accuracy of unguided articulated robots[J]. SAE International Journal of Aerospace, 2009, 2(1):40-45. [66] TAKANASHI N. 6 DOF manipulators absolute positioning accuracy improvement using a neural-network[C]//IEEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications, 1990:635-640. [67] WANG D L, BAI Y, ZHAO J Y. Robot manipulator calibration using neural network and a camera-based measurement system[J]. Transactions of the Institute of Measurement and Control, 2012, 34(1):105-121. [68] WANG D L, BAI Y. Improving position accuracy of robot manipulators using neural networks[C]//2005 IEEE Instrumentationand Measurement Technology Conference Proceedings, 2005:1524-1526. [69] LI B, TIAN W, ZHANG C F, et al. Positioning error compensation of an industrial robot using neural networks and experimental study[J]. Chinese Journal of Aeronautics, 2022, 35(2):346-360. [70] 周炜, 廖文和, 田威, 等. 基于粒子群优化神经网络的机器人精度补偿方法研究[J]. 中国机械工程, 2013, 24(2):174-179. ZHOU W, LIAO W H, TIAN W, et al. Method of industrial robot accuracy compensation based on particle swarm optimization neural network[J]. China Mechanical Engineering, 2013, 24(2):174-179(in Chinese). [71] 花芳芳, 田威, 胡俊山, 等. 基于深度神经网络的机器人定位误差补偿方法[J]. 航空制造技术, 2020, 63(17):78-85. HUA F F, TIAN W, HU J S, et al. Robot positioning error compensation method based on deep neural network[J]. Aeronautical Manufacturing Technology, 2020, 63(17):78-85(in Chinese). [72] BAI Y. On the comparison of model-based and modeless robotic calibration based on a fuzzy interpolation method[J]. The International Journal of Advanced Manufacturing Technology, 2007, 31(11-12):1243-1250. [73] ZHU W D, QU W W, CAO L H, et al. An off-line programming system for robotic drilling in aerospace manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(9-12):2535-2545. [74] ZENG Y F, TIAN W, LI D W, et al. An error-similarity-based robot positional accuracy improvement method for a robotic drilling and riveting system[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(9-12):2745-2755. [75] CAI Y, YUAN P J, SHI Z Y, et al. Application of universal kriging for calibrating offline-programming industrial robots[J]. Journal of Intelligent & Robotic Systems, 2019, 94(2):339-348. [76] NUBIOLA A, SLAMANI M, BONEV I A. A new method for measuring a large set of poses with a single telescoping ballbar[J]. Precision Engineering, 2013, 37(2):451-460. [77] GAUDREAULT M, JOUBAIR A, BONEV I A. Local and closed-loop calibration of an industrial serial robot using a new low-cost 3 d measuring device[C]//2016 IEEE International Conference on Robotics and Automation, 2016:4312-4319. [78] JOUBAIR A, BONEV I A. Non-kinematic calibration of a six-axis serial robot using planar constraints[J]. Precision Engineering, 2015, 40:325-333. [79] HE S S, MA L, YAN C Y, et al. Multiple location constraints based industrial robot kinematic parameter calibration and accuracy assessment[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(5-8):1037-1050. [80] LIU Y, XI N, ZHAO J G, et al. Development and sensitivity analysis of a portable calibration system for joint offset of industrial robot[C]//2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009:3838-3843. [81] WANG Z H, XU H, CHEN G D, et al. A distance error based industrial robot kinematic calibration method[J]. Industrial Robot:An International Journal, 2014, 41(5):439-446. [82] HA I C. Kinematic parameter calibration method for industrial robot manipulator using the relative position[J]. Journal of Mechanical Science and Technology, 2008, 22(6):1084-1090. [83] 曲巍崴, 董辉跃, 柯映林. 机器人辅助飞机装配制孔中位姿精度补偿技术[J]. 航空学报, 2011, 32(10):1951-1960. QU W W, DONG H Y, KE Y L. Pose accuracy compensation technology in robot-aided aircraft assembly drilling process[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1951-1960(in Chinese). [84] DEVLIEG R C. Robotic manufacturing system with accurate control:US8989898[P]. 2015-03-24. [85] TSAI J, WONG E, TAO J M, et al. Secondary position feedback control of a robot:US8473103[P]. 2013-06-25. [86] SAUND B, DEVLIEG R. High accuracy articulated robots with CNC control systems[J]. SAE International Journal of Aerospace, 2013, 6(2):780-784. [87] MÖLLER C, SCHMIDT H C, KOCH P, et al. Machining of large scaled CFRP-Parts with mobile CNC-based robotic system in aerospace industry[J]. Procedia Manufacturing, 2017, 14:17-29 [88] LIU S L, LIAO W H, TIAN W, et al. The problem in accuracy compensation of industrial robot[J]. International Robotics & Automation Journal, 2017, 3(2):282-283. [89] RUDERMAN M, HOFFMANN F, BERTRAM T. Modeling and identification of elastic robot joints with hysteresis and backlash[J]. IEEE Transactions on Industrial Electronics, 2009, 56(10):3840-3847. [90] ZHANG L, TIAN W, ZHENG F Y, et al. Accuracy compensation technology of Closed-Loop feed-back of industrial robot joints[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020(6):858-871. [91] DROLL S. Real time path correction of industrial robots with direct end-effector feedback from a laser tracker[J]. SAE International Journal of Aerospace, 2014, 7(2):222-228. [92] 史晓佳, 张福民, 曲兴华, 等. KUKA工业机器人位姿测量与在线误差补偿[J]. 机械工程学报, 2017, 53(8):1-7. SHI X J, ZHANG F M, QU X H, et al. Position and attitude measurement and online errors compensation for KUKA industrial robots[J]. Journal of Mechanical Engineering, 2017, 53(8):1-7(in Chinese). [93] 方勇纯. 机器人视觉伺服研究综述[J]. 智能系统学报, 2008, 3(2):109-114. FANG Y C. A survey of robot visual servoing[J]. CAAI Transactions on Intelligent Systems, 2008, 3(2):109-114(in Chinese). [94] MARIOTTINI G L, ORIOLO G, PRATTICHIZZO D. Image-based visual servoing for nonholonomic mobile robots using epipolar geometry[J]. IEEE Transactions on Robotics, 2007, 23(1):87-100. [95] HAJILOO A, KESHMIRI M, XIE W F, et al. Robust online model predictive control for a constrained image-based visual servoing[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4):2242-2250. [96] 辛菁, 刘丁, 杨延西. 基于图像的机器人视觉伺服免疫控制[J]. 仪器仪表学报, 2008, 29(11):2253-2259. XIN J, LIU D, YANG Y X. Image-based robot visual servoing immune control[J]. Chinese Journal of Scientific Instrument, 2008, 29(11):2253-2259(in Chinese). [97] LIPPIELLO V, SICILIANO B, VILLANI L. Position-based visual servoing in industrial multirobot cells using a hybrid camera configuration[J]. IEEE Transactions on Robotics, 2007, 23(1):73-86. [98] DONG G Q, ZHU Z H. Position-based visual servo control of autonomous robotic manipulators[J]. Acta Astronautica, 2015, 115:291-302. [99] 赵艳花, 张伟民. 基于位置的机器人视觉伺服控制系统研究[J]. 自动化与仪器仪表, 2010(5):3-4. ZHAO Y H, ZHANG W M. Research of robot visual servo control system based on position[J]. Automation & Instrumentation, 2010(5):3-4(in Chinese). [100] MALIS E, CHAUMETTE F, BOUDET S. 21/2 D visual servoing[J]. IEEE Transactions on Robotics and Automation, 1999, 15(2):238-250. [101] DENG L F, JANABI-SHARIFI F, WILSON W J. Hybrid motion control and planning strategies for visual servoing[J]. IEEE Transactions on Industrial Electronics, 2005, 52(4):1024-1040. [102] 谷雨, 李平, 韩波, 等. 一种基于混合视觉伺服的切换控制方法[J]. 传感技术学报, 2009, 22(4):602-607. GU Y, LI P, HAN B, et al.A switching control approach based on hybrid visual servoing[J]. Chinese Journal of Sensors and Actuators, 2009, 22(4):602-607(in Chinese). [103] SCHNEIDER U, OLOFSSON B, SO¨RNMO O, et al. Integrated approach to robotic machining with macro/micro-actuation[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(6):636-647. [104] SHU T T, GHARAATY S, XIE W F, et al. Dynamic path tracking of industrial robots with high accuracy using photogrammetry sensor[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(3):1159-1170. [105] GHARAATY S, SHU T T, XIE W F, et al. Accuracy enhancement of industrial robots by on-line pose correction[C]//20172nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), 2017:214-220. [106] KOLBARI H, SADEGHNEJAD S, BAHRAMI M, et al. Adaptive control of a robot-assisted tele-surgery in interaction with hybrid tissues[J]. Journal of Dynamic Systems, Measurement, and Control, 2018, 140(12):121012. [107] ALQUMSAN A A, KHOO S, NORTON M. Robust control of continuum robots using Cosserat rod theory[J]. Mechanism and Machine Theory, 2019, 131:48-61. [108] YEN V T, NAN W Y, CUONG P. Recurrent fuzzy wavelet neural networks based on robust adaptive sliding mode control for industrial robot manipulators[J]. Neural Computing and Applications, 2019, 31(11):6945-6958. [109] ZHANG D H, KONG L H, ZHANG S, et al. Neural networks-based fixed-time control for a robot with uncertainties and input deadzone[J]. Neurocomputing, 2020, 390:139-147. [110] YIN X X, PAN L. Direct adaptive robust tracking control for 6 DOF industrial robot with enhanced accuracy[J]. ISA Transactions, 2018, 72:178-184. [111] YEN V T, NAN W Y, VAN CUONG P. Robust adaptive sliding mode neural networks control for industrial robot manipulators[J]. International Journal of Control, Automation and Systems, 2019, 17(3):783-792. [112] DEVLIEG R, SITTON K, FEIKERT E, et al. ONCE (one-sided cell end effector) robotic drilling system[C]//SAE Technical Paper Series. Warrendale:SAE International, 2002. [113] ZHANG H, WANG J J, ZHANG G, et al. Machining with flexible manipulator:toward improving robotic machining performance[C]//Proceedings of 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2005:1127-1132. [114] GRAY T, ORF D, ADAMS G. Mobile automated robotic drilling, inspection, and fastening[C]//SAE Technical Paper Series. Warrendale:SAE International, 2013. [115] ADAMS G. Next generation mobile robotic drilling and fastening systems[C]//SAE Technical Paper Series. Warrendale:SAE International, 2014. [116] DEVLIEG R, FEIKERT E. One-up assembly with robots[C]//SAE Technical Paper Series. Warrendale:SAE International, 2008. [117] WANG W, TIAN W, LIAO W H, et al. Error compensation of industrial robot based on deep belief network and error similarity[J]. Robotics and Computer-Integrated Manufacturing, 2022, 73:102220. [118] 郭英杰. 基于工业机器人的飞机交点孔精镗加工关键技术研究[D]. 杭州:浙江大学, 2016. GUO Y J. Study on key techniques of aircraft intersection holes fine boring based on industrial robot[D]. Hangzhou:Zhejiang University, 2016(in Chinese). [119] 王桂锋. 工业机器人精镗飞机交点孔颤振研究及其数值模拟分析[D]. 杭州:浙江大学, 2017. WANG G F. Study on chatter performance of aircraft intersection holes fine boring and its numerical simulation analysis[D]. Hangzhou:Zhejiang University, 2017(in Chinese). [120] GUO Y J, DONG H Y, WANG G F, et al. A robotic boring system for intersection holes in air-craft assembly[J]. Industrial Robot:An International Journal, 2018, 45(3):328-336. [121] NIU J B, XU J T, REN F, et al. A short review on milling dynamics in low-stiffness cutting conditions:Modeling and analysis[J]. Journal of Advanced Manufacturing Science and Technology, 2021, 1(1):2020004. [122] SUSEMIHL H, BRILLINGER C, STVRMER S P, et al. Referencing strategies for high accuracy machining of large aircraft components with mobile robotic systems[C]//SAE Technical Paper Series. Warrendale:SAE International, 2017. [123] KOTHE S, VON STVRMER S P, SCHMIDT H C, et al. Accuracy analysis and error source identification for optimization of robot based machining systems for aerospace production[C]//SAE Technical Paper Series. Warrendale:SAE International, 2016:2137. [124] 李宇飞, 田威, 李波, 等. 机器人铣削系统精度控制方法及试验[J]. 航空学报, 2022,43(5):625815. LI Y F, TIAN W, LI B, et al. Accuracy control method and experiment of robot milling system[J]. Acta Aeronautica et Astronautica Sinica, 2022,43(5):625815(in Chinese). [125] ZHU D H, FENG X Z, XU X H, et al. Robotic grinding of complex components:a step towards efficient and intelligent machining-challenges, solutions, and applications[J]. Robotics and Computer-Integrated Manufacturing, 2020, 65:101908. [126] TSAI M J, HUANG J F, KAO W L. Robotic polishing of precision molds with uniform material removal control[J]. International Journal of Machine Tools and Manufacture, 2009, 49(11):885-895. [127] XIE H, LI W L, ZHU D H, et al. A systematic model of machining error reduction in robotic grinding[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(6):2961-2972. [128] 李东, 王诗敏. 装配机器人的关键技术与发展方向[J]. 中国机械, 2013(7):133-134. LI D, WANG S M. Key technologies and development direction of assembly robot[J]. Machine China, 2013(7):133-134(in Chinese). [129] 马聪. 电子制造机器人视觉引导装配的定位方法研究[D]. 长沙:湖南大学, 2019. MA C. Research on positioning method of vision guide assembly for electronic manufacturing robot[D]. Changsha:Hunan University, 2019(in Chinese). [130] 季旭全, 王君臣, 赵江地, 等. 基于机器人与视觉引导的星载设备智能装配方法[J]. 机械工程学报, 2018, 54(23):63-72. JI X Q, WANG J C, ZHAO J D, et al. Intelligent robotic assembly method of spaceborne equipment based on visual guidance[J]. Journal of Mechanical Engineering, 2018, 54(23):63-72(in Chinese). |
[1] | 马崇立, 刘景源. 网格对高超声速钝头体表面热流数值模拟结果的影响[J]. 航空学报, 2023, 44(5): 126710-126710. |
[2] | 王维民, 户东方. 旋转叶片动应力非接触测量方法研究综述[J]. 航空学报, 2023, 44(22): 28516-028516. |
[3] | 田威, 程思渺, 李波, 廖文和. 考虑关节回差的工业机器人精度补偿方法[J]. 航空学报, 2022, 43(5): 625569-625569. |
[4] | 李宇飞, 田威, 李波, 张楠. 机器人铣削系统精度控制方法及试验[J]. 航空学报, 2022, 43(5): 625815-625815. |
[5] | 廖文和, 郑侃, 孙连军, 董松, 张磊. 大型复杂构件机器人加工稳定性研究进展[J]. 航空学报, 2022, 43(1): 26061-026061. |
[6] | 林闯, 郑昱, 广晨汉, 王炎, 杨洋. 带翼展飞行器质量质心测量系统设计与误差分析[J]. 航空学报, 2022, 43(1): 224893-224893. |
[7] | 古丽加依娜·哈再孜汗, 项斌斌, 王娜, 艾力·玉苏甫, 陈卯蒸, 李宁, 薛飞. 26 m射电望远镜副面调整机构误差分析[J]. 航空学报, 2020, 41(4): 423271-423271. |
[8] | 石章虎, 何晓煦, 曾德标, 雷沛. 基于误差相似性的移动机器人定位误差补偿[J]. 航空学报, 2020, 41(11): 424105-424105. |
[9] | 王龙飞, 张丽艳, 叶南. 一种适用于曲面结构的机器人制孔误差在线补偿技术[J]. 航空学报, 2019, 40(10): 422871-422871. |
[10] | 何晓煦, 田威, 曾远帆, 廖文和, 向勇. 面向飞机装配的机器人定位误差和残差补偿[J]. 航空学报, 2017, 38(4): 420538-420538. |
[11] | 方强, 李超, 费少华, 孟涛. 机器人镗孔加工系统稳定性分析[J]. 航空学报, 2016, 37(2): 727-737. |
[12] | 董辉跃, 周华飞, 尹富成. 机器人自动制孔中绝对定位误差的分析与补偿[J]. 航空学报, 2015, 36(7): 2475-2484. |
[13] | 张涛, 唐小明, 金林. ADS-B用于高精度雷达标定的方法[J]. 航空学报, 2015, 36(12): 3947-3956. |
[14] | 胡开宇, 艾力·玉苏甫, 徐雪林, 项斌斌, 刘奇. 卡氏天线副面补偿技术中副面焦点坐标调整量的高精度数据拟合[J]. 航空学报, 2014, 35(12): 3425-3437. |
[15] | 任磊, 杜建邦, 王美娥. 旋转惯导中加速度计尺寸效应误差分析及补偿[J]. 航空学报, 2013, 34(6): 1424-1435. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学