1 |
童中翔, 王晓东. 飞行仿真技术的发展与展望[J]. 飞行力学, 2002, 20(3): 5-8.
|
|
TONG Z X, WANG X D. Development and prospect of flight simulation technology[J]. Flight Dynamics, 2002, 20(3): 5-8 (in Chinese).
|
2 |
高亚奎, 朱江, 林皓,等. 飞行仿真技术[M]. 上海: 上海交通大学出版社, 2015: 1-3, 85-88, 103-105.
|
|
GAO Y K, ZHU J, LIN H,et al. Flight simulation technology[M]. Shanghai:Shanghai Jiao Tong University Press, 2015: 1-3, 85-88, 103-105 (in Chinese).
|
3 |
关世义. 计算飞行力学的产生和发展[J]. 航空学报, 2001, 22(1): 1-5.
|
|
GUAN S Y. Development of computational flight mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(1): 1-5 (in Chinese).
|
4 |
关世义. 关于飞行力学的再思考[J]. 战术导弹技术,2003(2): 1-12.
|
|
GUAN S Y. A far and wide review of flight mechanics[J]. Tactical Missile Technology, 2003(2):1-12 (in Chinese).
|
5 |
WU Z G, YANG C. Flight loads and dynamics of flexible air vehicles[J]. Chinese Journal of Aeronautics, 2004, 17(1): 17-22.
|
6 |
郭东, 徐敏, 陈士橹. 弹性飞行器飞行动力学建模研究[J]. 空气动力学学报, 2013,3 1(4): 413-419, 436.
|
|
GUO D, XU M, CHEN S L. Research on flight dynamic modeling of highly flexible aircrafts[J]. Acta Aerodynamica Sinica, 2013, 31(4): 413-419,436 (in Chinese).
|
7 |
WASZAK M R, SCHMIDT D K. Flight dynamics of aeroelastic vehicles[J]. Journal of Aircraft, 1988, 25(6):563-571.
|
8 |
WASZAK M R, BUTTRILL C S, SCHMIDT D K. Modeling and model simplification of aeroelastic vehicles:An overview: NASA-TM-107691[R]. Washington, D.C.: NASA, 1992.
|
9 |
SCHMIDT D K, RANEY D L. Modeling and simulation of flexible flight vehicles[J]. Journal of Guidance, Control,and Dynamics, 2001, 24(3): 539-546.
|
10 |
SALTARI F, RISO C, MATTEIS G D,et al. Finite-element-based modeling for flight dynamics and aeroelasticity of flexible aircraft[J]. Journal of Aircraft, 2017, 54(6):2350-2366.
|
11 |
LIU Y, XIE C C. Aeroservoelastic stability analysis for flexible aircraft based on a nonlinear coupled dynamic model[J]. Chinese Journal of Aeronautics, 2018, 31(12): 2185-2198.
|
12 |
ZÚÑIGA D F C, SOUZA A G, GÓES L C S. Flight dynamics modeling of a flexible wing unmanned aerial vehicle[J]. Mechanical Systems and Signal Processing, 2020, 145: 106900.
|
13 |
孙若琳. 基于气动力降阶的弹性飞行器飞行动力学建模分析[D]. 北京: 北京航空航天大学, 2018: 3-5.
|
|
SUN R L. Flight dynamics simulation of elastic aircraft based on aerodynamic reduced-order modeling[D]. Beijing:Beihang University, 2018: 3-5 (in Chinese).
|
14 |
师妍, 万志强, 吴志刚,等. 基于气动力降阶的弹性飞机阵风响应仿真分析及验证[J]. 航空学报, 2022, 43(1):125474.
|
|
SHI Y, WAN Z Q, WU Z G,et al. Gust response analysis and verification of elastic aircraft based on nonlinear aerodynamic reduced-order model[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 125474 (in Chinese).
|
15 |
师妍, 万志强, 吴志刚, 等. 适用于弹性飞机飞行动力学仿真的气动力降阶方法研究[J/OL]. 北京航空航天大学学报, (2021-12-30) [2022-02-10]. .
|
|
SHI Y, WAN Z Q, WU Z G, et al. Research on aerodynamic order reduction method for elastic aircraft flight dynamics simulation[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, (2021-12-30) [2022-02-10]. (in Chinese).
|
16 |
LOOYE G. Integration of rigid and aeroelastic aircraft models using the residualised model method[C]∥ CEAS/AIAA/DGLR International Forum on Aeroelasticity and Structural Dynamics 2005. München:IFASD,2005.
|
17 |
KIER T, LOOYE G. Unifying manoeuvre and gust loads analysis[C]∥International Forum on Aeroelasticity and Structural Dynamics. Savannah:IFASD,2009.
|
18 |
CASTRICHINI A, WILSON T, SALTARI F,et al. Aeroelastics flight dynamics coupling effects of the semi-aeroelastic hinge device[J]. Journal of Aircraft, 2020, 57(2): 333-341.
|
19 |
CHEN P C, BALDELLI D, ZENG J. Dynamic flight simulation(DFS)tool for nonlinear flight dynamic simulation including aeroelastic effects[C]∥ AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA,2008.
|
20 |
TUEGEL E. The airframe digital twin:some challenges to realization[C]∥ 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2012.
|
21 |
ALLERTON D. Principles of flight simulation[M]. Chichester: John Wiley & Sons.Ltd., 2009: 16-18.
|
22 |
方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京: 北京航空航天大学出版社, 2005: 20-22, 174-186.
|
|
FANG Z P, CHEN W C, ZHANG S G. Flight mechanics of aircraft[M]. Beijing: Beihang University Press, 2005: 20-22, 174-186 (in Chinese).
|
23 |
PAMADI B N. Performance, stabiliy, dynamics and control of airplanes[M]. Reston: AIAA, 2015: 341-417.
|
24 |
管德. 非定常空气动力计算[M]. 北京: 北京航空航天大学出版社, 1991: 100-151.
|
|
GUAN D. Unsteady aerodynamic forces calculation[M]. Beijing :Beihang University Press, 1991: 100-151 (in Chinese).
|
25 |
TIFFANG S H, KARPEL M. Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics [C]∥ 30th Sturctures, Structural Dynamics and Materials Conference, 1989.
|
26 |
KARPEL M, STRUL E. Minimum-state unsteady aerodynamic approximations with flexible constraints[J]. Journal of Aircraft,1996,33(6):1190-1196.
|
27 |
KATZ J, PLOTKIN A. Low-speed aerodynamics[M]. Cambridge:Cambridge University Press, 2001: 331-368.
|
28 |
ZAER O. Software package[M]. Scottsdale: ZONA Technology Inc., 2008: 223-227.
|
29 |
布罗克豪斯. 飞行控制[M]. 金长江, 译. 北京:国防工业出版社, 1997: 125-127.
|
|
BROCKHAUS R. Flight control[M]. JIN C J, translation. Beijing: National Defense Industry Press, 1997: 125-127 (in Chinese).
|
30 |
杨超, 黄超, 吴志刚, 等. 气动伺服弹性研究的进展与挑战[J]. 航空学报, 2015, 36(4): 1011-1033.
|
|
YANG C, HUANG C, WU Z G, et al. Progress and challenges for aeroservoelasticity research[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1011-1033 (in Chinese).
|
31 |
杨超. 飞行器气动弹性原理[M]. 2版. 北京: 北京航空航天大学出版社, 2016: 1-11, 199-203.
|
|
YANG C. Principal of aircraft aeroelasticity[M]. 2nd ed. Beijing: Beihang University Press,2016: 1-11, 199-203 (in Chinese).
|
32 |
李秋彦,李刚,魏洋天, 等. 先进战斗机气动弹性设计综述[J]. 航空学报, 2020, 41(6): 523430.
|
|
LI Q Y, LI G, WEI Y T, et al. Review of aeroelasticity design for advanced flight[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523430 (in Chinese).
|
33 |
黄锐,胡海岩. 飞行器非线性气动伺服弹性力学[J]. 力学进展, 2021, 51(3): 428-466.
|
|
HUANG R, HU H Y. Nonlinear aeroservoelasticity of aircraft[J]. Advances in Mechanics, 2021, 51(3): 428-466 (in Chinese).
|