[1] HUNSAKER J C, WILSON E B. Report on behavior of aeroplane in gusts:NACA Rept.1[R]. Washington, D.C.:NACA, 1915. [2] COOPER J E, CHEKKAL I, CHEUNG R C M, et al. Design of a morphing wingtip[J]. Journal of Aircraft, 2015, 52(5):1394-1403. [3] BERNHAMMER L O, PW T S, ROELAND D B, et al. Gust load alleviation of an unmanned aerial vehicle wing using variable camber[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(7):795-805. [4] COOPER J, MILLER S, SENSBURG O, et al. Optimization of a scaled sensorcraft model with passive gust alleviation[C]//12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston:AIAA, 2008. [5] BI Y, XIE C C, AN C, et al. Gust load alleviation wind tunnel tests of a large-aspect-ratio flexible wing with piezoelectric control[J]. Chinese Journal of Aeronautics, 2017, 30(1):292-309. [6] DE SOUZA SIQUEIRA VERSIANI T, SILVESTRE F J, GUIMARÃES NETO A B, et al. Gust load alleviation in a flexible smart idealized wing[J]. Aerospace Science and Technology, 2019, 86:762-774. [7] HOBLIT F M. Gust loads on aircraft:Concepts and applications[M]. Reston:AIAA Education Series, 1988. [8] ETKIN B. Turbulent wind and its effect on flight[J]. Journal of Aircraft, 1981, 18(5):327-345. [9] DONE G. Introduction to aircraft aeroelasticity and loads[J]. The Aeronautical Journal, 2008, 112(1138):738-739. [10] KARPEL M. Design for active flutter suppression and gust alleviation using state-space aeroelastic modeling[J]. Journal of Aircraft, 1982, 19(3):221-227. [11] 吴志刚, 陈磊, 杨超, 等. 弹性飞机阵风响应建模与减缓方案设计[J]. 中国科学:技术科学, 2011, 41(3):394-402. WU Z G, CHEN L, YANG C, et al. Gust response modeling and alleviation scheme design for an elastic aircraft[J]. Scientia Sinica (Technologica), 2011, 41(3):394-402(in Chinese). [12] 聂雪媛, 杨国伟. 基于CFD降阶模型的阵风减缓主动控制研究[J]. 航空学报, 2015, 36(4):1103-1111. NIE X Y, YANG G W. Gust alleviation active control based on CFD reduced-order models[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1103-1111(in Chinese). [13] 顾宁, 陆志良, 郭同庆, 等. 阵风响应及减缓的非定常数值模拟[J]. 航空计算技术, 2012, 42(3):49-53. GU N, LU Z L, GUO T Q, et al. Gust response and alleviation analysis of airfoil[J]. Aeronautical Computing Technique, 2012, 42(3):49-53(in Chinese). [14] 许晓平, 祝小平, 周洲, 等. 基于CFD方法的阵风响应与阵风减缓研究[J]. 西北工业大学学报, 2010, 28(6):818-823. XU X P, ZHU X P, ZHOU Z, et al. Further exploring CFD-based gust response and gust alleviation[J]. Journal of Northwestern Polytechnical University, 2010, 28(6):818-823(in Chinese). [15] 张军红, 李振水, 詹孟权, 等. LQG控制理论在阵风载荷减缓系统中的应用[J]. 飞行力学, 2007, 25(2):61-64. ZHANG J H, LI Z S, ZHAN M Q, et al. Application of LQG theory to gust load alleviation system[J]. Flight Dynamics, 2007, 25(2):61-64(in Chinese). [16] 刘祥, 孙秦. 一种弹性机翼的颤振主动抑制与阵风减缓方法[J]. 西北工业大学学报, 2015, 33(5):804-810. LIU X, SUN Q. A robust active flutter suppression and gust alleviation method for flexible wing[J]. Journal of Northwestern Polytechnical University, 2015, 33(5):804-810(in Chinese). [17] 李卫琪, 张平, 陈宗基. 基于控制分配方法的阵风减缓控制律设计[J]. 系统仿真学报, 2008, 20(S2):247-251, 256. LI W Q, ZHANG P, CHEN Z J. Control allocation method based gust alleviation control design[J]. Journal of System Simulation, 2008, 20(S2):247-251, 256(in Chinese). [18] ZHAO Y H, YUE C Y, HU H Y. Gust load alleviation on a large transport airplane[J]. Journal of Aircraft, 2016, 53(6):1932-1946. [19] WINTHER B A, SHIRLEY W A, HEIMBAUGH R M. Wind-tunnel investigation of active controls technology applied to a DC-10 derivative[J]. Journal of Guidance and Control, 1981, 4(5):536-542. [20] PENNING K, LOVE M, ZINK P, et al. GLA and flutter suppression for a SensorCraft class concept using system identification[C]//26th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2008:7188. [21] VARTIO E, SHIMKO A, TILMANN C, et al. Structural modal control and gust load alleviation for a SensorCraft concept[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2005:1946. [22] SCOTT R, COULSON D, CASTELLUCCIO M, et al. Aeroservoelastic wind-tunnel tests of a free-flying, joined-wing SensorCraft model for gust load alleviation[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2011. [23] MATSUZAKI Y, UEDA T, MIYAZAWA Y, et al. Gust load alleviation of a transport-type wing-Test and analysis[J]. Journal of Aircraft, 1989, 26(4):322-327. [24] CHRISTHILF D, MOULIN B, RITZ E, et al. Characteristics of control laws tested on the semi-span super-sonic transport (S4T) wind-tunnel model[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2012. [25] NGUYEN N T, CRAMER N B, HASHEMI K E, et al. Progress on gust load alleviation wind tunnel experiment and aeroservoelastic model validation for a flexible wing with variable camber continuous trailing edge flap system[C]//AIAA Scitech 2020 Forum. Reston:AIAA, 2020. [26] CHEUNG R C M, REZGUI D, COOPER J E, et al. Testing of folding wingtip for gust load alleviation of flexible high-aspect-ratio wing[J]. Journal of Aircraft, 2020, 57(5):876-888. [27] 陈磊, 吴志刚, 杨超, 等. 弹性机翼阵风响应和载荷减缓与风洞试验验证[J]. 工程力学, 2011, 28(6):212-218. CHEN L, WU Z G, YANG C, et al. Gust response, load alleviation and wind-tunnel experiment verification of elastic wing[J]. Engineering Mechanics, 2011, 28(6):212-218(in Chinese). [28] WU Z G, CHEN L, YANG C. Study on gust alleviation control and wind tunnel test[J]. Science China Technological Sciences, 2013, 56(3):762-771. [29] 杨俊斌, 吴志刚, 戴玉婷, 等. 飞翼布局飞机阵风减缓主动控制风洞试验[J]. 北京航空航天大学学报, 2017, 43(1):184-192. YANG J B, WU Z G, DAI Y T, et al. Wind tunnel test of gust alleviation active control for flying wing configuration aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1):184-192(in Chinese). [30] DISNEY T E. C-5A active load alleviation system[J]. Journal of Spacecraft and Rockets, 1977, 14(2):81-86. [31] BRITT R T, JACOBSON S B, ARTHURS T D. Aeroservoelastic analysis of the B-2 bomber[J]. Journal of Aircraft, 2000, 37(5):745-752. [32] BURRIS P, BENDER M. Aircraft load alleviation and mode stabilization (LAMS) flight demonstration test analysis:AFFDL-TR-68-164[R]. Ohio:Air Force Flight Dynamics Laboratory, 1972. [33] JOHNSTON J F, URIE D M. Development and flight evaluation of active controls in the L-1011[C]//Proceedings of CTOL Transport Technology Conference. Virginia:Langley Research Center, 1978:647-685. [34] WILDSCHEK A, MAIER R, HAHN K U, et al. Flight test with an adaptive feed-forward controller for alleviation of turbulence excited wing bending vibrations[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2009. [35] LI F, WANG Y Z, DA RONCH A. Flight testing an adaptive feedforward controller for gust loads alleviation on a flexible aircraft[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2016. [36] 杨阳, 杨超, 吴志刚. 基于舵机动态特性测试的阵风减缓控制系统设计[J]. 振动与冲击, 2020, 39(4):106-112, 121. YANG Y, YANG C, WU Z G. A design of gust alleviation control system based on test of actuator's dynamic characteristics[J]. Journal of Vibration and Shock, 2020, 39(4):106-112, 121(in Chinese). [37] 黄诚惕. 希尔伯特-黄变换及其应用研究[D]. 成都:西南交通大学, 2006:78. HUANG C T. Study on Hilbert-Huang transform and its application[D]. Chengdu:Southwest Jiaotong University, 2006:78(in Chinese). [38] BOUDRAA A O, CEXUS J C, SAIDI Z. EMD-based signal noise reduction[J]. International Journal of Signal Processing, 2004, 1(1):33-37. |