[1] LIANG L, XIAO J, DENG Y C. Research and development trend of carrier landing technology of UAV[J]. Journal of Xi'an Aeronautical University, 2020, 38(5): 23-28 (in Chinese). 梁磊, 肖静, 邓扬晨. 舰载无人机着舰技术现状及发展趋势[J]. 西安航空学院学报, 2020, 38(5): 23-28. [2] YU L, ZHANG J B, XU L W. Research and development trend of foreign military UAV[J]. Aerodynamic Missile Journal, 2020(6): 46-49 (in Chinese). 于力, 张金榜, 徐磊武. 外军舰载无人机应用现状及发展趋势[J]. 飞航导弹, 2020(6): 46-49. [3] WU W H, ZHANG Y, HU Y N, et al. Research development in nonlinear backstepping control method of carrier-based aircraft landing[J]. Systems Engineering and Electronics, 2018, 40(7): 1578-1587 (in Chinese). 吴文海, 张杨, 胡云安, 等. 舰载机着舰非线性反演控制方法研究进展[J]. 系统工程与电子技术, 2018, 40(7): 1578-1587. [4] LIANG T J, CHEN X M, YANG Z X, et al. Trajectory control method for unmanned carrier aircraft taxiing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 289-296 (in Chinese). 梁天骄, 陈晓明, 杨朝旭, 等. 舰载无人机滑行轨迹控制方法[J]. 北京航空航天大学学报, 2021, 47(2): 289-296. [5] ZHU J F, HUANG Y P. Research on longitudinal control system of unmanned aerial vehicle landing[J]. Ship Science and Technology, 2019, 41(12): 217-219 (in Chinese). 朱剑芳, 黄运平. 无人机着舰纵向控制系统研究[J]. 舰船科学技术, 2019, 41(12): 217-219. [6] YANG L Q, ZHEN Z Y, XING D J, et al. Automatic carrier landing adaptive control system design of carrier-based UAV[J]. Flight Dynamics, 2018, 36(6): 36-39 (in Chinese). 杨柳青, 甄子洋, 邢冬静, 等. 舰载无人机自动着舰自适应控制系统设计[J]. 飞行力学, 2018, 36(6): 36-39. [7] RUBIO HERVAS J, REYHANOGLU M, TANG H, et al. Nonlinear control of fixed-wing UAVs in presence of stochastic winds[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 33: 57-69. [8] CHAKRABORTY A, SEILER P, BALAS G J. Susceptibility of F/A-18 flight controllers to the falling-leaf mode: linear analysis[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(1): 57-72. [9] ZHANG Y, WU W H, HU Y N, et al. Design of landing trajectory tracking robust controller for carrier-based unmanned aerial vehicle[J]. Control Theory & Applications, 2018, 35(4): 557-565 (in Chinese). 张杨, 吴文海, 胡云安, 等. 舰载无人机着舰轨迹跟踪鲁棒控制器设计[J]. 控制理论与应用, 2018, 35(4): 557-565. [10] LIU C, LU L B, MIAO Y H, et al. Dynamic inversion control for fixed-wing UAVs based on sliding mode extended disturbance observer[J]. Electronics Optics & Control, 2018, 25(8): 32-38, 64 (in Chinese). 刘畅, 芦利斌, 苗育红, 等. 基于滑模扩张干扰观测器的固定翼无人机动态逆控制[J]. 电光与控制, 2018, 25(8): 32-38, 64. [11] LEE S, LEE J, LEE S, et al. Sliding mode guidance and control for UAV carrier landing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(2): 951-966. [12] WANG L P, ZHANG Z, ZHU Q D, et al. Longitudinal automatic carrier landing system guidance law using model predictive control with an additional landing risk term[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(3): 1089-1105. [13] ZHENG F Y, ZHEN Z Y, GONG H J. Observer-based backstepping longitudinal control for carrier-based UAV with actuator faults[J]. Journal of Systems Engineering and Electronics, 2017, 28(2): 322-377. [14] SUN Y, ZHANG W G, ZHANG M. Backstepping adaptive high maneuvers flight control based on neural network[J]. Systems Engineering and Electronics, 2011, 33(5): 1113-1117 (in Chinese). 孙勇, 章卫国, 章萌. 基于神经网络的反步自适应大机动飞行控制[J]. 系统工程与电子技术, 2011, 33(5): 1113-1117. [15] CHEN M, GE S S, HOW B V E. Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities[J]. IEEE Transactions on Neural Networks, 2010, 21(5): 796-812. [16] CHEN M, ZOU Q Y, JIANG C S, et al. Dynamical inversion flight control based on neural network disturbance observer[J]. Control and Decision, 2008, 23(3): 283-287 (in Chinese). 陈谋, 邹庆元, 姜长生, 等. 基于神经网络干扰观测器的动态逆飞行控制[J]. 控制与决策, 2008, 23(3): 283-287. [17] LI F, HU J B, WU J, et al. Dynamic surface control with nonlinear disturbance observer for uncertain flight dynamic system[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2015, 32(4): 469-476. |