[1] 郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展[J]. 航空学报, 2014, 35(10):2722-2732. GUO H B, GONG S K, XU H B. Research progress on new high/ultra-high temperature thermal barrier coatings and processing technologies[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2722-2732(in Chinese). [2] 唐詩白, 荆甫雷. 航空发动机热障涂层的主要失效模式[J]. 航空动力, 2019(3):73-75. TANG S B, JING F L. Main failure modes of TBC of aero engine[J]. Aerospace Power, 2019(3):73-75(in Chinese). [3] 周绪强, 王红顺, 王艳. 浅谈燃气涡轮发动机热障涂层技术发展[J]. 内燃机与配件, 2019(24):22-23. ZHOU X Q, WANG H S, WANG Y. Brief discussion on the development of thermal barrier coating technology for gas turbine engines[J]. Internal Combustion Engine & Parts, 2019(24):22-23(in Chinese). [4] GLEESON B. Thermal barrier coatings for aeroengine applications[J]. Journal of Propulsion and Power, 2006, 22(2):375-383. [5] GUO X Y, LU Z, JUNG Y G, et al. Novel lanthanum zirconate-based thermal barrier coatings for energy applications[M]. Cham:Springer, 2021. [6] MATHANBABU M, THIRUMALAIKUMARASAMY D, THIRUMAL P, et al. Study on thermal, mechanical, microstructural properties and failure analyses of lanthanum zirconate based thermal barrier coatings:A review[J]. Materials Today:Proceedings, 2021, 46:7948-7954. [7] ŁATKA L. Thermal barrier coatings manufactured by suspension plasma spraying-A review[J]. Advances in Materials Science, 2018, 18(3):95-117. [8] NIKI T, OGAWA K, SHOJI T. Mechanical and high temperature oxidation properties of cold sprayed CoNiCrAlY coatings for thermal barrier coating[J]. Journal of Solid Mechanics and Materials Engineering, 2008, 2(6):739-747. [9] 郭兴旺, 丁蒙蒙. 热障涂层厚度及厚度不均热无损检测的数值模拟[J]. 航空学报, 2010, 31(1):198-203. GUO X W, DING M M. Simulation of thermal NDT of thickness and its unevenness of thermal barrier coatings[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1):198-203(in Chinese). [10] LI S L, YANG H W, QI H Y, et al. Experimental study and numerical modeling of the damage evolution of thermal barrier coating systems under tension[J]. Science China Technological Sciences, 2018, 61(12):1882-1888. [11] HONDA S, OGIHARA Y, KISHI T, et al. Estimation of thermal shock resistance of fine porous alumina by infrared radiation heating method[J]. Journal of the Ceramic Society of Japan, 2009, 117(1371):1208-1215. [12] HONDA S, SUZUKI T, NISHIKAWA T, et al. Estimation of thermal shock properties for silicon nitride having high thermal conductivity[J]. Journal of the Ceramic Society of Japan, 2002, 110(1277):38-43. [13] LIU Y X, WU X F, GUO Q K, et al. Experiments and numerical simulations of thermal shock crack patterns in thin circular ceramic specimens[J]. Ceramics International, 2015, 41(1):1107-1114. [14] KALANTAR M, FANTOZZI G. Thermo-mechanical properties of ceramics:Resistance to initiation and propagation of crack in high temperature[J]. Materials Science and Engineering:A, 2008, 472(1-2):273-280. [15] MENG S H, LIU G Q, GUO Y, et al. Mechanisms of thermal shock failure for ultra-high temperature ceramic[J]. Materials & Design, 2009, 30(6):2108-2112. [16] 刘志远, 肖杰, 杨丽, 等. 涡轮叶片热障涂层隔热性能和应力数值模拟[J]. 湘潭大学学报(自然科学版), 2020, 42(3):107-115. LIU Z Y, XIAO J, YANG L, et al. Numerical simulation of thermal insulation performance and stress of thermal barrier coatings on turbine blades[J]. Journal of Xiangtan University (Natural Science Edition), 2020, 42(3):107-115(in Chinese). [17] 刘光, 张啸寒, 贾利, 等. 等离子喷涂Mo/8YSZ功能梯度热障涂层结构优化与热力耦合模拟计算[J]. 表面技术, 2020, 49(3):213-223. LIU G, ZHANG X H, JIA L, et al. Structural optimization and thermo-mechanical coupling simulation of plasma sprayed Mo/8YSZ functionally graded thermal barrier coating[J]. Surface Technology, 2020, 49(3):213-223(in Chinese). [18] 戴晨煜, 钟舜聪, 唐长明, 等. 基于内聚力单元与XFEM的热障涂层失效分析[J]. 焊接学报, 2019, 40(8):138-143, 167. DAI C Y, ZHONG S C, TANG C M, et al. Failure analysis of thermal barrier coatings based on cohesive element and XFEM[J]. Transactions of the China Welding Institution, 2019, 40(8):138-143, 167(in Chinese). [19] WANG Y T, ZHOU X P, KOU M M. An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks[J]. European Journal of Mechanics-A/Solids, 2019, 73:282-305. [20] GUSKI V, VERESTEK W, RAPP D, et al. Microstructural investigation of plasma sprayed ceramic coatings focusing on the effect of the splat boundary for SOFC sealing applications using peridynamics[J]. Theoretical and Applied Fracture Mechanics, 2021, 112:102926. [21] LIU B C, BAO R, SUI F C. A fatigue damage-cumulative model in peridynamics[J]. Chinese Journal of Aeronautics, 2021, 34(2):329-342. [22] TANG S B, ZHANG H, TANG C A, et al. Numerical model for the cracking behavior of heterogeneous brittle solids subjected to thermal shock[J]. International Journal of Solids and Structures, 2016, 80:520-531. [23] ZHANG H, QIAO P Z. An extended state-based peridynamic model for damage growth prediction of bimaterial structures under thermomechanical loading[J]. Engineering Fracture Mechanics, 2018, 189:81-97. [24] OTERKUS S, MADENCI E, AGWAI A. Fully coupled peridynamic thermomechanics[J]. Journal of the Mechanics and Physics of Solids, 2014, 64:1-23. [25] XUE T, ZHANG X B, TAMMA K K. A two-field state-based Peridynamic theory for thermal contact problems[J]. Journal of Computational Physics, 2018, 374:1180-1195. [26] WANG Y T, ZHOU X P, KOU M M. Peridynamic investigation on thermal fracturing behavior of ceramic nuclear fuel pellets under power cycles[J]. Ceramics International, 2018, 44(10):11512-11542. [27] DANZER R, LUBE T, SUPANCIC P, et al. Fracture of ceramics[J]. Advanced Engineering Materials, 2008, 10(4):275-298. [28] MASERA K, HOSSAIN A K. Biofuels and thermal barrier:A review on compression ignition engine performance, combustion and exhaust gas emission[J]. Journal of the Energy Institute, 2019, 92(3):783-801. [29] 乔丕忠, 张勇, 张恒, 等. 近场动力学研究进展[J]. 力学季刊, 2017, 38(1):1-13. QIAO P Z, ZHANG Y, ZHANG H, et al. A review on advances in peridynamics[J]. Chinese Quarterly of Mechanics, 2017, 38(1):1-13(in Chinese). [30] 孙杰, 徐业鹏. 改进键型近场动力学方法下的多裂纹板破坏分析[J]. 科学技术与工程, 2020, 20(10):3817-3822. SUN J, XU Y P. Failure of multi-cracked plates by modified bond-based peridynamics[J]. Science Technology and Engineering, 2020, 20(10):3817-3822(in Chinese). [31] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1):175-209. [32] BOBARU F, DUANGPANYA M. The peridynamic formulation for transient heat conduction[J]. International Journal of Heat and Mass Transfer, 2010, 53(19-20):4047-4059. |