航空学报 > 2022, Vol. 43 Issue (6): 526587-526587   doi: 10.7527/S1000-6893.2021.26587

基于近场动力学理论的热障涂层热冲击开裂行为

马玉娥, 杨萌, 孙文博   

  1. 西北工业大学 航空学院, 西安 710072
  • 收稿日期:2021-10-29 修回日期:2022-03-15 出版日期:2022-06-15 发布日期:2022-02-17
  • 通讯作者: 马玉娥,E-mail:ma.yu.e@nwpu.edu.cn E-mail:ma.yu.e@nwpu.edu.cn
  • 基金资助:
    国家自然科学基金(91860128)

Cracking behavior of thermal barrier coating after thermal shock based on perdynamic theory

MA Yu'e, YANG Meng, SUN Wenbo   

  1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2021-10-29 Revised:2022-03-15 Online:2022-06-15 Published:2022-02-17
  • Supported by:
    National Natural Science Foundation of China (91860128)

摘要: 为研究热障涂层热冲击后损伤行为,设计并完成了陶瓷基热障涂层(TBC)的热冲击试验,研究了热障涂层损伤规律,分析了热冲击温度对损伤的影响。基于近场动力学(PD)理论,推导了热障涂层的热力耦合计算列式,编程计算了热障涂层的温度响应和裂纹扩展过程,分析了冲击温度对热障涂层损伤的影响。结果表明:纵向裂纹从陶瓷层表面萌生,沿厚度方向扩展到陶瓷层/粘结层界面附近,部分裂纹出现分叉和转向的现象,形成了与界面平行的横向裂纹;随热冲击温度提高,涂层中纵向裂纹萌生时间提前且数量增加,纵向裂纹数量在0.50 s时达到峰值。近场动力学方法可较好地捕捉热障涂层内部纵向裂纹和横向裂纹的萌生与扩展现象,且裂纹位置、裂纹形式及不同参数对涂层损伤的影响规律与试验符合较好。

关键词: 热障涂层, 近场动力学, 热冲击试验, 热力耦合, 开裂行为

Abstract: To study the failure mechanism of the thermal barrier coating after thermal shock, a thermal shock test of the ceramic-based Thermal Barrier Coating (TBC) was designed and completed. The failure mode of TBCs and the effect of thermal shock temperature were studied. Based on the Peridynamic (PD) theory, thermal-mechanical coupling equations were derived, and programs were coded to simulate the temperature and failure growing of TBC, and the effect of temperature on damage of TBC was analyzed. It is shown that longitudinal cracks propagated from the surface of the ceramic layer to the interface between the ceramic layer and the bond coat layer along the thickness direction. Some of the cracks were branched and turned to be transverse cracks parallel to the interface. As the thermal shock temperature increased, longitudinal cracks in the coating initiated earlier, and the number of the cracks gradually increased and reached a peak at 0.50 s. The PD method can capture the initiation and propagation of cracks, crack position, crack growing and shock temperature effects, and these numerical results agree well with the experimental ones.

Key words: thermal barrier coating, peridynamics, thermal shock test, thermal-mechanical coupling, cracking behavior

中图分类号: