[1] 廉筱纯, 吴虎. 航空发动机原理[M].西安: 西北工业大学出版社, 2005: 147-182. LIAN X C, WU H. Principle of aeroengine[M].Xi'an: Northwest University of Technology Press, 2005: 147-182 (in Chinese). [2] MODEST M F. Radiative heat transfer[M].3th ed. Salt Lake City:Academic Press, 2013: 279-302. [3] 索建秦, 馮翔洲, 梁紅俠, 等. 航空发动机燃烧室研发中的数值仿真探讨[J]. 航空动力, 2021(2): 61-65. SUO J Q, FENG X Z, LIANG H X, et al. Numerical simulation for research and development of aero engine combustor[J]. Aerospace Power, 2021(2): 61-65 (in Chinese). [4] HOWELL J R, MENGVÇ M P, DAUN K, et al. Thermal radiation heat transfer[M].6th ed. New York: CRC Press, 2015: 573-664. [5] 余其铮. 辐射换热原理[M].哈尔滨: 哈尔滨工业大学出版社, 2000: 144-160. YU Q Z. Principle of radiant heat transfer[M].Harbin: Harbin Institute of Technology Press, 2000: 144-160 (in Chinese). [6] SUN W J, JIANG S, XU K. An asymptotic preserving implicit unified gas kinetic scheme for frequency-dependent radiative transfer equations[J]. International Journal of Numerical Analysis and Modeling, 2018, 15(1-2): 134-153. [7] CERCIGNANI C. The boltzmann equation[M]//The Boltzmann equation and its applications. New York: Springer New York, 1988: 40-103. [8] 刘沙, 王勇, 袁瑞峰, 等. 统一气体动理学方法研究进展[J]. 气体物理, 2019, 4(4): 1-13. LIU S, WANG Y, YUAN R F, et al. Advance in unified methods based on gas-kinetic theory[J]. Physics of Gases, 2019, 4(4): 1-13 (in Chinese). [9] 刘畅, 徐昆. 离散时空直接建模思想及其在模拟多尺度输运中的应用[J]. 空气动力学学报, 2020, 38(2): 197-216. LIU C, XU K. Direct modeling methodology and its applications in multiscale transport process[J]. Acta Aerodynamica Sinica, 2020, 38(2): 197-216 (in Chinese). [10] LI Z H, ZHANG H X. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum[J]. Journal of Computational Physics, 2004, 193(2): 708-738. [11] WU J L, LI Z H, ZHANG Z B, et al. On derivation and verification of a kinetic model for quantum vibrational energy of polyatomic gases in the gas-kinetic unified algorithm[J]. Journal of Computational Physics, 2021, 435: 109938. [12] XU K, HUANG J C. A unified gas-kinetic scheme for continuum and rarefied flows[J]. Journal of Computational Physics, 2010, 229(20): 7747-7764. [13] XU K, HUANG J C. An improved unified gas-kinetic scheme and the study of shock structures[J]. IMA Journal of Applied Mathematics, 2011, 76(5): 698-711. [14] GUO Z L, XU K, WANG R J. Discrete unified gas kinetic scheme for all Knudsen number flows: Low-speed isothermal case[J]. Physical Review E, 2013, 88(3): 033305. [15] ZHU L H, GUO Z L, XU K. Discrete unified gas kinetic scheme on unstructured meshes[J]. Computers & Fluids, 2016, 127: 211-225. [16] 姚博, 张创, 郭照立. 考虑分子转动自由度的离散统一气体动理学格式[J]. 航空学报, 2019, 40(7): 122914. YAO B, ZHANG C, GUO Z L. Discrete unified gas kinetic scheme for diatomic gas with rotational degrees of freedom[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 122914 (in Chinese). [17] CHEN Y P, ZHU Y J, XU K. A three-dimensional unified gas-kinetic wave-particle solver for flow computation in all regimes[J]. Physics of Fluids, 2020, 32(9): 096108. [18] SUN W J, JIANG S, XU K, et al. An asymptotic preserving unified gas kinetic scheme for frequency-dependent radiative transfer equations[J]. Journal of Computational Physics, 2015, 302: 222-238. [19] SUN W J, JIANG S, XU K, et al. Multiscale simulation for the system of radiation hydrodynamics[J]. Journal of Scientific Computing, 2020, 85(2): 1-24. [20] LUO X P, WANG C H, ZHANG Y, et al. Multiscale solutions of radiative heat transfer by the discrete unified gas kinetic scheme[J]. Physical Review E, 2018, 97(6-1): 063302. [21] SONG X L, ZHANG C, ZHOU X F, et al. Discrete unified gas kinetic scheme for multiscale anisotropic radiative heat transfer[J]. Advances in Aerodynamics, 2020, 1: 50-64. [22] 谈和平, 夏新林, 刘林华,等. 红外辐射特性与传输的数值计算: 计算热辐射学[M].哈尔滨: 哈尔滨工业大学出版社, 2006: 18-41. TAN H P,XIA X L, LIU L H,et al. Numerical calculation of infrared radiation characteristics and transmission: Computational thermal radiation[M].Harbin: Harbin Institute of Technology Press, 2006: 18-41 (in Chinese). [23] ZHOU X F, GUO Z L. Discrete unified gas kinetic scheme for steady multiscale neutron transport[J]. Journal of Computational Physics, 2020, 423: 109767. [24] ZHANG C, GUO Z L, CHEN S Z. Unified implicit kinetic scheme for steady multiscale heat transfer based on the phonon Boltzmann transport equation[J]. Physical Review E, 2017, 96(6-1): 063311. [25] DEMBO R S, EISENSTAT S C, STEIHAUG T. Inexact Newton methods[J]. SIAM Journal on Numerical Analysis, 1982, 19(2): 400-408. [26] CROCKATT M M, CHRISTLIEB A J, GARRETT C K, et al. An arbitrary-order, fully implicit, hybrid kinetic solver for linear radiative transport using integral deferred correction[J]. Journal of Computational Physics, 2017, 346: 212-241. [27] DARWISH M S, MOUKALLED F. The normalized weighting factor method: A novel technique for accelerating the convergence of high-resolution convective schemes[J]. Numerical Heat Transfer, Part B: Fundamentals, 1996, 30(2): 217-237. [28] XAMÁN J, ZAVALA-GUILLÉN I, HERNÁNDEZ-LÓPEZ I, et al. Evaluation of the CPU time for solving the radiative transfer equation with high-order resolution schemes applying the normalized weighting-factor method[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 208: 45-63. [29] TRUELOVE J S. Discrete-ordinate solutions of the radiation transport equation[J]. Journal of Heat Transfer, 1987, 109(4): 1048-1051. |