[1] SEINER J M, DASH S M, KENZAKOWSKI D C. Historical survey on enhanced mixing in scramjet engines[J]. Journal of Propulsion and Power, 2001, 17(6):1273-1286. [2] SUN Z Z, SCARANO F, VAN OUDHEUSDEN B W, et al. Numerical and experimental investigations of the supersonic microramp wake[J]. AIAA Journal, 2014, 52(7):1518-1527. [3] ZHANG Y J, LIU W D, SUN M B. Effect of microramp on transverse jet in supersonic crossflow[J]. AIAA Journal, 2016, 54(12):4041-4045. [4] BRINKERHOFF J R, ORIA H, YARAS M I. Experimental and computational study of mixing mechanisms in an axisymmetric lobed mixer[J]. Journal of Propulsion and Power, 2013, 29(5):1017-1030. [5] 张冬冬, 谭建国, 李浩, 等. 基于三角波瓣混合器的超声速流场精细结构和掺混特性[J]. 物理学报, 2017, 66(10):104702. ZHANG D D, TAN J G, LI H, et al. Fine flow structure and mixing characteristic in supersonic flow induced by a lobed mixer[J]. Acta Physica Sinica, 2017, 66(10):104702(in Chinese). [6] BURNES R, PARR T, WILSON K, et al. Investigation of supersonic mixing control using cavities:Effect of fuel injection location:AIAA-2000-3618[R]. Reston:AIAA, 2000. [7] ZANG A, TEMPEL T, YU K, et al. Experimental characterization of cavity-augmented supersonic mixing:AIAA-2005-1423[R]. Reston:AIAA, 2005. [8] SHI H T, WANG G L, LUO X S, et al. Large-eddy simulation of a pulsed jet into a supersonic crossflow[J]. Computers & Fluids, 2016, 140:320-333. [9] ZHAO M J, YE T H. URANS study of pulsed hydrogen jet characteristics and mixing enhancement in supersonic crossflow[J]. International Journal of Hydrogen Energy, 2019, 44(36):20493-20503. [10] BARZEGAR GERDROODBARY M, MORADI R, TLILI I. The influence of upstream wavy surface on the mixing zone of the transverse hydrogen jet at supersonic free stream[J]. Aerospace Science and Technology, 2019, 94:105407. [11] LI Z X, MANH T D, BARZEGAR GERDROODBARY M, et al. The effect of sinusoidal wall on hydrogen jet mixing rate considering supersonic flow[J]. Energy, 2020, 193:116801. [12] TAN J G, ZHANG D D, LV L. A review on enhanced mixing methods in supersonic mixing layer flows[J]. Acta Astronautica, 2018, 152:310-324. [13] HUANG W, DU Z B, YAN L, et al. Supersonic mixing in airbreathing propulsion systems for hypersonic flights[J]. Progress in Aerospace Sciences, 2019, 109:100545. [14] 黄伟, 杜兆波. 超声速流动中燃料混合增强方法研究进展[J]. 航空兵器, 2020, 27(4):1-10. HUANG W, DU Z B. Progress in research on mixing enhancement approaches in supersonic crossflow[J]. Aero Weaponry, 2020, 27(4):1-10(in Chinese). [15] 郭欣, 王强. 基于PSE的单股剪切混合流稳定性分析[J]. 航空学报, 2011, 32(8):1411-1420. GUO X, WANG Q. Stability analysis of single-stream shear mixing layer based on parabolized stability equations[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8):1411-1420(in Chinese). [16] YANG W B, ZHUANG F G, SHEN Q, et al. Experimental and numerical study on instability structure of the supersonic mixing layer (Mc=0.5)[J]. Science in China Series G:Physics, Mechanics and Astronomy, 2009, 52(10):1624-1631. [17] URBAN W D, MUNGAL M G. Planar velocity measurements in compressible mixing layers[J]. Journal of Fluid Mechanics, 2001, 431:189-222. [18] 罗纪生, 吕祥翠. 超音速混合层稳定性分析及增强混合的研究[J]. 力学学报, 2004, 36(2):202-207. LUO J S, LÜ X C. Investigation on stability of 3-d supersonic mixing layer and method of enhancing the mixing[J]. Acta Mechanica Sinica, 2004, 36(2):202-207(in Chinese). [19] 郑忠华, 范周琴, 王子昂, 等. 流场可压缩性对涡相互作用影响的数值研究[J]. 航空学报, 2020, 41(2):123295. ZHENG Z H, FAN Z Q, WANG Z A, et al. Numerical study of compressibility effect on flowfield evolution of vortex interaction[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):123295(in Chinese). [20] WALLACE D, REDEKOPP L G. Linear instability characteristics of wake-shear layers:AIAA-1991-1644[R]. Reston:AIAA, 1991. [21] ZHUANG M, DIMOTAKIS P E. Instability of wake-dominated compressible mixing layers[J]. Physics of Fluids, 1995, 7(10):2489-2495. [22] MARTINI E, CAVALIERI A V G, JORDAN P. Acoustic modes in jet and wake stability[J]. Journal of Fluid Mechanics, 2019, 867:804-834. [23] YANG R, WANG Z G, WU J P. Instability of an asymmetric supersonic planar wake[J]. Acta Astronautica, 2020, 173:86-90. [24] MAYER C S J, VON TERZI D A, FASEL H F. Direct numerical simulation of complete transition to turbulence via oblique breakdown at Mach 3[J]. Journal of Fluid Mechanics, 2011, 674:5-42. |