[1] SUN W K, XU Y M, HU C Y, et al. Effect of film-hole configuration on creep rupture behavior of a second generation nickel-based single crystal superalloys[J]. Materials Characterization, 2017, 130:298-310. [2] 荆甫雷, 王荣桥, 胡殿印, 等. 单晶高温疲劳损伤参量的选取与寿命建模[J]. 航空学报, 2016, 37(9):2749-2756. JING F L, WANG R Q, HU D Y, et al. Damage parameter determination and life modeling for high temperature fatigue of single crystals[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2749-2756(in Chinese). [3] 董建民, 李嘉荣, 韩梅. 检验腐蚀对镍基单晶高温合金高周疲劳性能的影响[J]. 材料工程, 2020, 48(1):77-83. DONG J M, LI J R, HAN M. Effects of check corrosion on high cycle fatigue properties of nickel-base single crystal superalloy[J]. Journal of Materials Engineering, 2020, 48(1):77-83(in Chinese). [4] 王盼航, 余竹焕, 张洋, 等. 预氧化对一种镍基单晶高温合金的热腐蚀影响[J]. 材料科学与工艺, 2018, 26(6):36-42. WANG P H, YU Z H, ZHANG Y, et al. Effect of pre-oxidation on hot corrosion of a nickel-base superalloy[J]. Materials Science and Technology, 2018, 26(6):36-42(in Chinese). [5] 李树索, 韩雅芳, 肖程波, 等. Ni3Al基合金IC6及MCrAlY包覆涂层的抗腐蚀性能[J]. 中国有色金属学报, 2003, 13(6):1451-1455. LI S S, HAN Y F, XIAO C B, et al. Corrosion resistances of Ni3Al based alloy IC6 and MCrAlY overlay coatings[J]. The Chinese Journal of Nonferrous Metals, 2003, 13(6):1451-1455(in Chinese). [6] OZGURLUK Y, DOLEKER K M, KARAOGLANLI A C. Hot corrosion behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 thermal barrier coatings exposed to molten sulfate and vanadate salt[J]. Applied Surface Science, 2018, 438:96-113. [7] 宋鹏, 姜祥伟, 吴俊杰, 等. DD421单晶高温合金在无SOx气氛下的低温热腐蚀硫化行为[J]. 材料工程, 2021, 49(6):109-115. SONG P, JIANG X W, WU J J, et al. Sulfidation behavior in low-temperature hot corrosion of single crystal superalloy DD421 without SOx atmosphere[J]. Journal of Materials Engineering, 2021, 49(6):109-115(in Chinese). [8] KIM D, KIM D, LEE H J, et al. Corrosion characteristics of Ni-base superalloys in high temperature steam with and without hydrogen[J]. Journal of Nuclear Materials, 2013, 441(1-3):612-622. [9] SUN Z P, HE G Y, MENG Q J, et al. Corrosion mechanism investigation of TiN/Ti coating and TC4 alloy for aircraft compressor application[J]. Chinese Journal of Aeronautics, 2020, 33(6):1824-1835. [10] KOVACI H, BOZKURT Y B, YETIM A F, et al. The effect of surface plastic deformation produced by shot peening on corrosion behavior of a low-alloy steel[J]. Surface and Coatings Technology, 2019, 360:78-86. [11] OKORO S C, MONTGOMERY M, FRANDSEN F J, et al. Influence of preoxidation on high temperature corrosion of a Ni-based alloy under conditions relevant to biomass firing[J]. Surface and Coatings Technology, 2017, 319:76-87. [12] WANG Y, PAN X Y, WANG X B, et al. Influence of laser shock peening on surface integrity and tensile property of high strength low alloy steel[J]. Chinese Journal of Aeronautics, 2021, 34(6):199-208. [13] 乔红超, 胡宪亮, 赵吉宾, 等. 激光冲击强化的影响参数与发展应用[J]. 表面技术, 2019, 48(12):1-9, 53. QIAO H C, HU X L, ZHAO J B, et al. Influence parameters and development application of laser shock processing[J]. Surface Technology, 2019, 48(12):1-9, 53(in Chinese). [14] 苟磊, 马玉娥, 杜永, 等. 7050凹槽铝板激光冲击强化残余应力分布与疲劳寿命[J]. 航空学报, 2019, 40(12):423096. GOU L, MA Y, DU Y, et al. Residual stress profile and fatigue life of 7050 aluminum plate with groove under laser shot peening[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12):423096(in Chinese). [15] GENG Y X, DONG X, WANG K D, et al. Evolutions of microstructure, phase, microhardness, and residual stress of multiple laser shock peened Ni-based single crystal superalloy after short-term thermal exposure[J]. Optics & Laser Technology, 2020, 123:105917. [16] LU G X, LIU J D, QIAO H C, et al. Effect of laser shock on tensile deformation behavior of a single crystal nickel-base superalloy[J]. Materials Science and Engineering:A, 2017, 686:46-53. [17] 鲁金忠, 周婉婷, 张圣洋, 等. 激光冲击强化层数对6061-T6铝合金抗腐蚀性能的影响[J]. 吉林大学学报(工学版), 2019, 49(3):842-849. LU J Z, ZHOU W T, ZHANG S Y, et al. Effect of coverage layer on corrosion resistance of 6061-T6 aluminum alloy subjected to laser shock peening[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3):842-849(in Chinese). [18] NING C Y, ZHANG G Y, YANG Y P, et al. Effect of laser shock peening on electrochemical corrosion resistance of IN718 superalloy[J]. Applied Optics, 2018, 57(10):2467-2473. [19] GE M Z, XIANG J Y. Effect of laser shock peening on microstructure and fatigue crack growth rate of AZ31B magnesium alloy[J]. Journal of Alloys and Compounds, 2016, 680:544-552. [20] JOHNSON J N, ROHDE R W. Dynamic deformation twinning in shock-loaded iron[J]. Journal of Applied Physics, 1971, 42(11):4171-4182. [21] PEYRE P, FABBRO R. Laser shock processing:A review of the physics and applications[J]. Optical and Quantum Electronics, 1995, 27(12):1213-1229. [22] HU X L, WU J J, ZHAO J B, et al. Numerical simulation of the surface morphology and residual stress field of IN718 alloy by Gaussian mode laser shock[J]. Optik, 2020, 207:164441. [23] GILL A, TELANG A, MANNAVA S R, et al. Comparison of mechanisms of advanced mechanical surface treatments in nickel-based superalloy[J]. Materials Science and Engineering:A, 2013, 576:346-355. [24] LIU K, YANG H F, XIONG F, et al. Research on the dynamic yield strength and forming depth of microscale laser shock imprinting[J]. Optics & Laser Technology, 2019, 116:189-195. [25] 中国金属学会高温材料分会. 中国高温合金手册:下册[M]. 北京:中国质检出版社和中国标准出版社, 2012. Academic Committee of the Superalloys, CSM. China superalloys handbook:Part Two[M]. Beijing:Quality Inspection Press of China and Standards Press of China, 2012(in Chinese). [26] 郑刚, 孟宪凯, 陈松玲, 等. 激光温喷丸强化Inconel718镍基合金热腐蚀性能研究[J]. 中国激光, 2016, 43(4):0403005. ZHENG G, MENG X K, CHEN S L, et al. Research on hot-corrosion of Inconel718 nickel-based alloy treated by warm laser shock peening[J]. Chinese Journal of Lasers, 2016, 43(4):0403005(in Chinese). [27] 李艳明, 刘欢, 乔志, 等. 镍基高温合金DD5、DD10和DSM11热腐蚀行为比较[J]. 中国有色金属学报, 2020, 30(9):2105-2115. LI Y M, LIU H, QIAO Z, et al. Comparison on hot corrosion behaviors of Ni-base superalloy DD5, DD10 and DSM11[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(9):2105-2115(in Chinese). [28] CHEN L, ZHANG X Z, GAN S Y. Microstructure and hot corrosion of GH2036 alloy treated by laser shock peening[J]. JOM, 2020, 72(2):754-763. [29] HUA Y Q, RONG Z, YE Y X, et al. Laser shock processing effects on isothermal oxidation resistance of GH586 superalloy[J]. Applied Surface Science, 2015, 330:439-444. [30] CAO J D, ZHANG J S, HUA Y Q, et al. Microstructure and hot corrosion behavior of the Ni-based superalloy GH202 treated by laser shock processing[J]. Materials Characterization, 2017, 125:67-75. |