[1] Wang Y H, Kou H, Chang H, et al. Phase transformation in TC21 alloy during continuous heating[J]. Journal of Alloys and Compounds, 2009, 472(1): 252-256.
[2] Li H, Qu H L, Zhao Y Q, et al. Effect of lamellar thickness on fatigue crack growth rate of TC21 alloy of damage tolerance[J]. Materials Engineering, 2006(4): 21-23 (in Chinese). 李辉, 曲恒磊, 赵永庆, 等. 片层厚度对损伤容限型TC21合金裂纹扩展速率的影响[J]. 材料工程, 2006(4): 21-23.
[3] Zhao Y Q, Qu H L, Feng L, et al. Research on high strength, high toughness and high damage-tolerant titanium alloy-TC21[J]. Titanium Industry Progress, 2004, 21(1): 22-24 (in Chinese). 赵永庆, 曲恒磊, 冯亮, 等. 高强高韧损伤容限型钛合金TC21研制[J]. 钛工业进展, 2004, 21(1): 22-24.
[4] Du S G, Lv C, Ren J X, et al. Study on surface morphology and microstructure of titanium alloy TC4 under high-speed milling[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1711-1715 (in Chinese). 杜随更, 吕超, 任军学, 等. 钛合金TC4高速铣削表面形貌及表层组织研究[J]. 航空学报, 2008, 29(6): 1711-1715.
[5] Yuan Z X, Yu Z S, Tan P, et al. Effect of rare earths on the carburization of steel[J]. Materials Science and Engineering: A, 1999, 267(1): 162-166.
[6] Zhu Y S, Lu W Z, Wang H, et al. Characteristics of RE-B surface diffusion process on the new damage tolerance TC21 alloy[J]. Rare Metal Materials and Engineering, 2014, 43(3): 692-697 (in Chinese). 朱延松, 卢文壮, 王晗, 等. 新型损伤容限型钛合金TC21稀土催化固体渗硼[J]. 稀有金属材料与工程, 2014, 43(3): 692-697.
[7] Wang H, Lu W Z, Xu J, et al. Effect of rare earth (RE) on pack boronizing process of titanium alloy[J]. Surface Engineering, 2014, 30(2): 123-128.
[8] Yi X H, Fan Z G, Zhang J L, et al. Effects of rare earth on boronizing of TC4 titanium alloy[J]. Journal of the Chinese Rare Earth Society, 2010, 28(5): 607-611 (in Chinese). 衣晓红, 樊占国, 张景垒, 等. 稀土对TC4钛合金固体渗硼的影响研究[J]. 中国稀土学报, 2010, 28(5): 607-611.
[9] Sarma B, Ravi Chandran K S. Accelerated kinetics of surface hardening by diffusion near phase transition temperature: mechanism of growth of boride layers on titanium[J]. Acta Materialia, 2011, 59(10): 4216-4228.
[10] Niu R R, Ge P, Yang G J, et al. Determination of phase transformation point of TC21 titanium alloy[J]. Material & Heat Treatment, 2010, 39(8): 15-16 (in Chinese). 牛蓉蓉, 葛鹏, 杨冠军, 等. TC21钛合金相变点测定[J]. 热加工工艺, 2010, 39(8): 15-16.
[11] Tikekar N M, Ravi Chandran K S, Sanders A. Nature of growth of dual titanium boride layers with nanostructured titanium boride whiskers on the surface of titanium[J]. Scripta Materialia, 2007, 57(3): 273-276.
[12] Sun J S. Wear of metal[M]. Zhang W, translated. Beijing: Metallurgical Industry Press, 1992: 118 (in Chinese). 孙家枢. 金属的磨损[M]. 张卫, 译. 北京: 冶金工业出版社, 1992: 118.
[13] Yao X F, Xie F Q, Han Y, et al. Effect of temperature on wear properties and friction coefficient of TC4[J]. Rare Metal Material and Engineering, 2012, 42(8): 1464-1466 (in Chinese). 姚小飞, 谢发勤, 韩勇, 等. 温度对TC4钛合金磨损性能和摩擦系数的影响[J]. 稀有金属材料与工程, 2012, 42(8): 1464-1466.
[14] Doris K W. What role for contact spots and dislocations in friction and wear?[J]. Wear, 1996, 200(1): 8-29.
[15] Dai J H, Wu X, Song Y, et al. Electronic structure mechanism of martensitic phase transformation in binary titanium alloys[J]. Journal of Applied Physics, 2012, 112(12): 123718.
[16] Guo A H, Cui W F, Liu X H, et al. Wear properties of magnetron sputtering TiN coating on α+β type biomedical Ti6Al7Nb alloy[J]. Rare Metal Material and Engineering, 2009, 38(3): 473-476 (in Chinese). 郭爱红, 崔文芳, 刘向宏, 等. α+β型生物钛合金磁控溅射 TiN 涂层磨损性能[J]. 稀有金属材料与工程, 2009, 38(3): 473-476.
[17] Xu J, Lu W Z, Wang H, et al. Characteristics and wear properties of grinding surface of titanium alloy TC4-DT[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35 (2): 567-573 (in Chinese). 胥军, 卢文壮, 王晗, 等. TC4-DT钛合金磨削表面特性及其摩擦磨损性能[J]. 航空学报, 2014, 35(2): 567-573. |