[1] |
MAKSIMENKO V P. Stress-strain analysis of smooth and ribbed shells under local loads[J]. International Applied Mechanics, 2003, 39(5):599-606.
|
[2] |
MONTROSS C S, WEI T, YE L, et al. Laser shock processing and its effects on microstructure and properties of metal alloys:a review[J]. International Journal of Fatigue, 2002, 24(10):1021-1036.
|
[3] |
PEYRE P, FABBRO R. Laser shock processing:A review of the physics and applications[J]. Optical & Quantum Electronics, 1995, 27(12):1213-1229.
|
[4] |
高玉魁. GH742高温合金激光冲击强化和喷丸强化残余应力[J]. 稀有金属材料与工程, 2016, 45(9):2347-2351. GAO Y K. Residual stresses of GH742 superalloy induced by laser peening and shot peening[J]. Rare Metal Materials and Engineering, 2016, 45(9):2347-2351(in Chinese).
|
[5] |
高玉魁, 仲政, 雷力明. 激光冲击强化和喷丸强化对FGH97高温合金疲劳性能的影响[J]. 稀有金属材料与工程, 2016, 45(5):1230-1234. GAO Y K, ZHONG Z, LEI L M. Influence of laser peening and shot peening on fatigue properties of FGH97 superalloy[J]. Rare Metal Materials and Engineering, 2016, 45(5):1230-1234(in Chinese).
|
[6] |
HATAMLEH O, LYONS J, FORMAN R. Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T7351 aluminum alloy joints[J]. International Journal of Fatigue, 2007, 29(3):421-434.
|
[7] |
JIANG S Q, ZHOU J Z, FAN Y J, et al. Prediction on residual stress and fatigue life of magnesium alloy treated by laser shot peening[J]. Materials Science Forum, 2009, 626-627:393-398.
|
[8] |
WILLIAM B, ROBERT B. Finite element simulation of laser shock peening[J]. International Journal of Fatigue, 1999, 21(7):719-724.
|
[9] |
ROBERT A B, WILLIAM R B, STEVEN E, et a1. Prediction and characterization of residual stresses from laser shock peening[J]. International Journal of Fatigue, 2012, 36(1):96-108.
|
[10] |
BROWN M W, MILLER K J. A theory for fatigue failure under multiaxial stress and strain conditions[J]. Proceedings of the Institution of Mechanical Engineers, 1973, 187(65):745-755.
|
[11] |
DING K. Three-dimensional dynamic finite element analysis of multiple laser shock peening processes[J]. Surface Engineering, 2003, 19(5):351-358.
|
[12] |
花国然, 蒋苏州, 曹宇鹏, 等. 激光冲击7050铝合金表面"残余应力洞"的模拟[J]. 金属热处理, 2017, 42(7):154-157. HUA G R, JIANG S Z, CAO Y P, et al. Numerical simulation of residual stress hole on 7050 aluminum alloy under laser shock[J]. Heat Treatment of Metals, 2017, 42(7):154-157(in Chinese).
|
[13] |
胡永祥, 姚振强, 胡俊. 激光冲击强化残余应力场的数值仿真分析[J]. 中国激光, 2006, 33(6):846-851. HU Y X, YAO Z Q, HU J. Numerical simulation of residual stress field for laser shock processing[J]. Chinese Journal of Lasers, 2006, 33(6):846-851(in Chinese).
|
[14] |
FABBRO R, FOURNIER J, BALLARD P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2):775-784.
|
[15] |
余天宇, 戴峰泽, 张永康, 等. 平顶光束激光冲击2024铝合金诱导残余应力场的模拟与实验[J]. 中国激光, 2012, 39(10):25-31. YU T Y, DAI F Z, ZHANG Y K, et al. Simulation and experimental study on residual stress field of 2024 aluminum alloy induced by flat-top laser beam[J]. Chinese Journal of Lasers,2012, 39(10):25-31(in Chinese).
|
[16] |
TENG T L, FUNG C P, CHANG P H. Effect of residual stresses on the fatigue of butt joints using thermal elastic-plastic and multiaxial fatigue theory[J]. Engineering Failure Analysis, 2003, 10(2):131-151.
|
[17] |
周昊, 刘英芳, 刘刚, 等. 考虑残余应力的焊接结构多轴疲劳准则[J]. 焊接学报, 2017, 38(11):41-46. ZHOU H, LIU Y F, LIU G, et al. Multiaxial fatigue criterion for welded structures considering residual stress[J]. Transactions of the China Welding Institution, 2017, 38(11):41-46(in Chinese).
|
[18] |
王文利, 瞿伟廉, 皮永林. 考虑焊接残余应力的桅杆结构拉耳节点风致疲劳裂纹萌生寿命评定[J]. 土木工程学报, 2010, 43(s2):22-27. WNAG W L, QU W L, PI Y L. Assessment of wind induced fatigue crack initiation life at guyed mast ear-plate joints considering welding residual stresses[J]. China Civil Engineering Journal, 2010, 43(s2):22-27(in Chinese).
|
[19] |
SMITH R N, WATSON P, TOPPER T H. A stress-strain parameter for the fatigue of metals[J]. Journal of Materials, 1970, 5(4):767-778.
|
[20] |
FATEMI A, SOCIE D F. A critical plane approach to multiaxial fatigue damage including out of phase loading[J]. Fatigue & Fracture of Engineering Materials& Structures, 1988, 11(3):149-165.
|
[21] |
WANG C H, BROWN M W. Life prediction techniques for variable amplitude multiaxial fatigue-part1:theories[J]. ASME Journal of Engineering Material and Technology, 1996, 118(2):367-370.
|
[22] |
刘俭辉, 王生楠, 黄新春, 等. 基于损伤力学-临界面法预估多轴疲劳寿命[J]. 机械工程学报, 2015, 51(20):120-127. LIU J H, WANG S N, HUANG X C, et al. Multiaxial fatigue life prediction based on damage mechanics and critical plane method[J]. Journal of Mechanical Engineering, 2015, 51(20):120-127(in Chinese).
|
[23] |
刘俭辉. 基于损伤力学-临界面法的多轴疲劳寿命预估方法研究[D]. 西安:西北工业大学, 2015:53-62. LIU J H. Multiaxial fatigue life prediction based on damage mechanics and critical plane method damage[D]. Xi' an:Northwestern Polytechnical University, 2015:53-62(in Chinese).
|
[24] |
SUSMEL L. A simple and efficient numerical algorithm to determine the orientation of the critical plane in multiaxial fatigue problems[J]. International Journal of Fatigue, 2010, 32(11):1875-1883.
|
[25] |
CARPINTERI A, SPAGNOLI A, VANTADORI S, et al. Structural integrity assessment of metallic components under multiaxial fatigue:The c-s criterion and its evolution[J]. Fatigue & Fracture of Engineering Materials & Structures, 2013, 36(9):870-883.
|
[26] |
THOMAS V H. Probabilistic modeling and simulation of metal fatigue life prediction[D]. Monterey:Naval Post Graduate School, 2002:67-70.
|