[1] Wu J. Study on the influence of polishing after shot peening on 300M steel[D]. Xi'an: Northwestern Polytechnical University, 2007 (in Chinese). 武俊. 300M钢喷丸强化工艺中打磨问题的研究[D]. 西安: 西北工业大学, 2007.
[2] Outwater J O, Shaw M C. Surface temperatures in grinding [J]. Transactions of the ASME, 1952, 74(1): 73-78.
[3] Komanduri R, Hou Z B. Thermal modeling of the metal cutting process — Part III: temperature rise distribution due to the combined effects of shear plane heat source and the tool-chip interface frictional heat source[J]. International Journal of Mechanical Sciences, 2001, 43(1): 89-107.
[4] Li L W, Li B, Ehmann K F, et al. A thermo-mechanical model of dry orthogonal cutting and its experimental validation through embedded micro-scale thin film thermocouple arrays in PCBN tooling[J]. International Journal of Machine Tools and Manufacture, 2013, 70: 70-87.
[5] Richardson D J, Keavey M A, Dailami F. Modelling of cutting induced workpiece temperatures for dry milling [J]. International Journal of Machine Tools and Manufacture, 2006, 46(10): 1139-1145.
[6] Chen Y, Yang S B, Fu Y C, et al. FEM estimation of tool wear in high speed cutting of Ti6Al4V alloy[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2230-2240 (in Chinese). 陈燕, 杨树宝, 傅玉灿, 等. 钛合金TC4高速切削刀具磨损的有限元仿真[J]. 航空学报, 2013, 34(9): 2230-2240.
[7] Kuo H, Meyer K, Lindle R, et al. Estimation of milling tool temperature considering coolant and wear[J]. ASME Journal of Manufacturing Science and Engineering, 2012, 134(3): 31001-31002.
[8] Lin S, Peng F Y, Wen J, et al. An investigation of workpiece temperature variation in end milling considering flank rubbing effect[J]. International Journal of Machine Tools and Manufacture, 2013, 73: 71-86.
[9] Remes H, Korhonen E, Lehto P, et al. Influence of surface integrity on the fatigue strength of high-strength steels[J]. Journal of Constructional Steel Research, 2013, 89: 21-29.
[10] Hu C Y, Liu X L, Chen X, et al. Failure analysis of rotating shaft in main undercarriage [J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 461-468 (in Chinese). 胡春燕, 刘新灵, 陈星, 等. 主起落架上转轴开裂原因分析[J]. 航空学报, 2014, 35(2): 461-468.
[11] Wang L T, Ke Y L, Huang Z G, et al. Study on residual stress produced in milling of aeronautic structure [J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(3): 286-288 (in Chinese). 王立涛, 柯映林, 黄志刚, 等. 航空结构件铣削残余应力分布规律的研究[J]. 航空学报, 2003, 24(3): 286-288.
[12] Du S G, Jiang Z, Zhang D H, et al. Softening mechanism of grinding surface metamorphic layer of GH4169DA[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1446-1451 (in Chinese). 杜随更, 姜哲, 张定华, 等. GH4169DA磨削表面变质层软化机理[J]. 航空学报, 2014, 35(5): 1446-1451.
[13] Navas V G, Gonzalo O, Bengoetxea I. Effect of cutting parameters in the surface residual stresses generated by turning in AISI 4340 steel[J]. International Journal of Machine Tools and Manufacture, 2012, 61: 48-57.
[14] Sun J, Guo Y B. A comprehensive experimental study on surface integrity by end milling Ti-6Al-4V[J]. Journal of Materials Processing Technology, 2009, 209(8): 4036-4042.
[15] Varela P I, Rakurty C S, Balaji A K. Surface integrity in hard machining of 300M steel: effect of cutting-edge geometry on machining induced residual stresses[J]. Procedia CIRP, 2014, 13: 288-293
[16] Zhou Z H. The theory of metal cutting[M]. Beijing: China Machine Press, 1992: 62 (in Chinese). 周泽华. 金属切削理论[M]. 北京: 机械工业出版社, 1992: 62.
[17] Shaw M C. Metal cutting principles [M]. Oxford: Oxford University Press Inc., 2005: 206.
[18] Xu Q J. Study of grinding with no burn and low stress on 300M ultra-high strength steel[D]. Xi'an: Northwestern Polytechnical University, 1992 (in Chinese). 徐庆九. 300M超高强度钢无烧伤低应力磨削的研究 [D]. 西安: 西北工业大学, 1992. |