[1] MUNIYANDI M, DOWDING A, ANDERS S. Vibration testing and validation of aero engines pipe work[C]//ISABE, 2017. [2] 林君哲, 周恩涛, 杜林森, 等. 航空发动机管路系统振动机制及故障诊断研究综述[J]. 机床与液压, 2013, 41(1):163-164, 141. LIN J Z, ZHOU E T, DU L S, et al. Literature review on vibration mechanism and fault diagnosis of the pipe system of aero-engine[J]. Machine Tool & Hydraulics, 2013, 41(1):163-164, 141(in Chinese). [3] 刘海年, 刘志强, 张大义, 等. 航空发动机成品振动环境分析与试验载荷谱确定[J]. 航空维修与工程, 2013(4):63-65. LIU H N, LIU Z Q, ZHANG D Y, et al. Study on the vibration environment characteristics and test spectrum of aero-engine accessories[J]. Aviation Maintenance & Engineering, 2013(4):63-65(in Chinese). [4] 王桂华, 刘海年, 张大义, 等. 航空发动机成附件振动环境试验剖面确定方法研究[J]. 推进技术, 2013, 34(8):1101-1107. WANG G H, LIU H N, ZHANG D Y, et al. Study on formulating method for vibration environment test profiles of aero-engine accessories[J]. Journal of Propulsion Technology, 2013, 34(8):1101-1107(in Chinese). [5] 许锷俊. 航空发动机导管结构完整性要求的初步研究[J]. 航空发动机, 1994, 20(3):53-62. XU E J. The preliminary study on the integrity requirements of the aero-engine pipe structure[J]. Aeroengine, 1994, 20(3):53-62(in Chinese). [6] GAO P X, YU T, ZHANG Y L, et al. Vibration analysis and control technologies of hydraulic pipeline system in aircraft:A review[J]. Chinese Journal of Aeronautics, 2021, 34(4):83-114. [7] 刘中华, 李兴泉, 贾铎, 等. 航空发动机液压管路裂纹故障分析[J]. 航空发动机, 2020, 46(5):66-70. LIU Z H, LI X Q, JIA D, et al. Crack fault analysis of hydraulic pipe for an aeroengine[J]. Aeroengine, 2020, 46(5):66-70(in Chinese). [8] 李洋, 佟文伟, 韩振宇, 等. 发动机引气管卡箍断裂原因分析[J]. 失效分析与预防, 2013, 8(3):167-172. LI Y, TONG W W, HAN Z Y, et al. Fracture analysis of aero-engine cited trachea clamp[J]. Failure Analysis and Prevention, 2013, 8(3):167-172(in Chinese). [9] 刘天文, 李舜酩, 庞燕龙, 等. 航空发动机燃油总管支架断裂故障分析[J]. 燃气涡轮试验与研究, 2015, 28(4):23-26, 56. LIU T W, LI S M, PANG Y L, et al. Investigation on fuel manifold bracket fracture failure for an aero-engine[J]. Gas Turbine Experiment and Research, 2015, 28(4):23-26, 56(in Chinese). [10] 刘中华, 贾铎, 刘鑫. 某航空发动机卡箍断裂故障分析[J]. 航空发动机, 2019, 45(3):77-81. LIU Z H, JIA D, LIU X. Fracture failure analysis of clamp for an aeroengine[J]. Aeroengine, 2019, 45(3):77-81(in Chinese). [11] 尹泽勇, 陈亚农. 卡箍刚度的有限元计算与实验测定[J]. 航空动力学报, 1999, 14(2):179-182. YIN Z Y, CHEN Y N. Finite element analysis and experimental measurement of stiffness of hoop[J]. Journal of Aerospace Power, 1999, 14(2):179-182(in Chinese). [12] 朱昭君, 陈志英. 卡箍的参数化建模及参数对刚度的影响[J]. 河南科技大学学报(自然科学版), 2011, 32(5):12-15, 5. ZHU Z J, CHEN Z Y. Parametric modeling and effect of parameters on stiffness for clamp[J]. Journal of Henan University of Science & Technology (Natural Science), 2011, 32(5):12-15, 5(in Chinese). [13] 柴清东, 朴玉华, 马辉, 等. 卡箍-管路系统固有特性计算与试验方法[J]. 航空动力学报, 2019, 34(5):1029-1035. CHAI Q D, PIAO Y H, MA H, et al. Calculation of natural characteristics and experimental methods of the clamp-pipe system[J]. Journal of Aerospace Power, 2019, 34(5):1029-1035(in Chinese). [14] LI Z Y, WANG J J, QIU M X. Dynamic characteristics of fluid-conveying pipes with piecewise linear support[J]. International Journal of Structural Stability and Dynamics, 2016, 16(6):1550025. [15] 李占营, 王建军, 邱明星. 简谐激励下柔性卡箍支承管路系统响应[J]. 航空动力学报, 2017, 32(11):2705-2712. LI Z Y, WANG J J, QIU M X. Responses of pipe system with flexible clamp under harmonic excitation[J]. Journal of Aerospace Power, 2017, 32(11):2705-2712(in Chinese). [16] 闫辉, 姜洪源, 李瑰贤, 等. 航空发动机管路支承用金属隔振器性能研究[J]. 中国机械工程, 2007, 18(12):1443-1447. YAN H, JIANG H Y, LI G X, et al. Research on the performance of metal isolator used in the pipeline support of aeroengine[J]. China Mechanical Engineering, 2007, 18(12):1443-1447(in Chinese). [17] 李鑫, 张利剑, 何银铜. 改进PSO的金属橡胶卡箍隔振仿真分析与参数优化[J]. 智能系统学报, 2015, 10(4):599-606. LI X, ZHANG L J, HE Y T. Simulation analysis and parameter optimization of vibration isolation of metal rubber clamps based on the modified PSO[J]. Transactions on Intelligent Systems, 2015, 10(4):599-606(in Chinese). [18] JIANG F, DING Z Y, WU Y W, et al. Energy dissipation characteristics and parameter identification of symmetrically coated damping structure of pipelines under different temperature environment[J]. Symmetry, 2020, 12(8):1283. [19] 李枫, 刘伟, 韦顺超, 等. 航空液压管道卡箍等效刚度及其影响因素研究[J]. 机械科学与技术, 2017, 36(9):1472-1476. LI F, LIU W, WEI S C, et al. Research on equivalent stiffness and influence factors of aero-clamps for aircraft hydraulic pipelines[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(9):1472-1476(in Chinese). [20] 孙冰江. 考虑卡箍等效刚度的航空液压管路系统动力学分析[D]. 秦皇岛:燕山大学, 2018:9-20, 22-28. SUN B J. Dynamic analysis of aviation hydrau-lic pipeline system considering the equivalent stiffness of clamp[D]. Qinhuangdao:Yanshan University, 2018:9-20, 22-28. (in Chinese) [21] 高晔, 孙伟, 朴玉华, 等. 基于实测频响函数反推管路卡箍支承刚度与阻尼[J]. 航空动力学报, 2019, 34(3):664-670. GAO Y, SUN W, PIAO Y H, et al. Inverse identification of support stiffness and damping of hoop based on measured FRF[J]. Journal of Aerospace Power, 2019, 34(3):664-670(in Chinese). [22] GAO Y, SUN W. Inverse identification of the mechanical parameters of a pipeline hoop and analysis of the effect of preload[J]. Frontiers of Mechanical Engineering, 2019, 14(3):358-368. [23] 高晔, 孙伟, 马辉. 基于实测扫频响应反推管路卡箍支承刚度及阻尼[J]. 振动与冲击, 2020, 39(8):58-63. GAO Y, SUN W, MA H. Inverse identification of the pipeline support stiffness and damping of the hoop based on the measured sweep frequency response[J]. Journal of Vibration and Shock, 2020, 39(8):58-63(in Chinese). [24] ULANOV A M, BEZBORODOV S A. Calculation method of pipeline vibration with damping supports made of the MR material[J]. Procedia Engineering, 2016, 150:101-106. [25] BEZBORODOV S A, ULANOV A M. Calculation of vibration of pipeline bundle with damping support made of MR material[J]. Procedia Engineering, 2017, 176:169-174. [26] 吕金华, 臧朝平, 许本胜, 等. 卡箍动力学特性研究[J]. 机械制造与自动化, 2020, 49(4):28-31. LYU J H, ZANG C P, XU B S, et al. Study of dynamic characteristics of clamp[J]. Machine Building & Automation, 2020, 49(4):28-31(in Chinese). [27] LIU X D, SUN W, GAO Z H. Optimization of hoop layouts for reducing vibration amplitude of pipeline system using the semi-analytical model and genetic algorithm[J]. IEEE Access, 2020, 8:224394-224408. [28] 闫辉, 姜洪源, 刘文剑, 等. 具有迟滞非线性的金属橡胶隔振器参数识别研究[J]. 物理学报, 2009, 58(8):5238-5243. YAN H,JIANG H Y, LIU W J, et al. Identification of parameters for metal rubber isolator with hysteretic nonlinearity characteristics[J]. Acta Physica Sinica, 2009, 58(8):5238-5243(in Chinese). [29] 吕金华, 臧朝平, 张让威, 等. 基于测试数据的卡箍非线性等效建模方法[J]. 航空动力学报, 2019, 34(9):1944-1952. LYU J H, ZANG C P, ZHANG R W, et al. Nonlinear equivalent modeling method for clamp based on test data[J]. Journal of Aerospace Power, 2019, 34(9):1944-1952(in Chinese). [30] 吕金华. 航空发动机外部管路单联卡箍动力学特性研究[D]. 南京:南京航空航天大学, 2019:48-70. LYU J H. Research on dynamic characteristics of single coupled clamp of external pipe system of aeroengine[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2019:48-70(in Chinese). [31] 刘中华, 贾铎, 王鑫, 等. 航空发动机卡箍装配应力试验与装配参数控制方法[J]. 航空动力学报, 2020, 35(2):368-377. LIU Z H, JIA D, WANG X, et al. Clamp assembly stress test of aero-engine and assembly parameter control method[J]. Journal of Aerospace Power, 2020, 35(2):368-377(in Chinese). [32] GUO X M, MA H, ZHANG X F, et al. Uncertain frequency responses of clamp-pipeline systems using an interval-based method[J]. IEEE Access, 2020, 8:29370-29384. [33] 吕金华, 臧朝平, 许本胜, 等. 卡箍性能对管路系统动力学特性影响分析[J]. 机械制造与自动化, 2020, 49(3):43-46. LV J H, ZANG C P, XU B S, et al. Analysis of influence of clamp performance on dynamic characteristics of pipe system[J]. Machine Building & Automation, 2020, 49(3):43-46(in Chinese). [34] 于涛, 曲虹全, 王潇, 等. 基于动力学缩减的长跨距管路系统振动特性分析[J]. 烟台大学学报(自然科学与工程版), 2020, 33(4):457-463. YU T, QU H Q, WANG X, et al. Vibration characteristics analysis of long span pipeline system based on dynamics reduction method[J]. Journal of Yantai University (Natural Science and Engineering Edition), 2020, 33(4):457-463(in Chinese). [35] CHAI Q D, ZENG J, MA H, et al. A dynamic modeling approach for nonlinear vibration analysis of the L-type pipeline system with clamps[J]. Chinese Journal of Aeronautics, 2020, 33(12):3253-3265. [36] 康力, 洪杰, 徐雷, 等. 航空发动机外部管路的振动响应分析[J]. 航空发动机, 2015, 41(2):50-54. KANG L, HONG J, XU L, et al. Vibration response analysis of aeroengine external pipelines[J]. Aeroengine, 2015, 41(2):50-54(in Chinese). [37] 赵爽. 航空发动机外部管路的动力学特性及流固耦合分析[D]. 南京:南京航空航天大学, 2014:11-36. ZHAO S. Dynamics of aero-engine external piping and fluid-structure interaction analysis[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014:11-36(in Chinese). [38] 柴清东, 付强, 马辉, 等. 单-双联卡箍管路系统建模及动力学特性分析[J]. 振动与冲击, 2020, 39(19):114-120. CHAI Q D, FU Q, MA H, et al. Modeling and dynamic characteristics analysis for a pipeline system with single double-clamp[J]. Journal of Vibration and Shock, 2020, 39(19):114-120(in Chinese). [39] 赵伟志, 陈志英. 燃油管路系统振动特性有限元模拟技术[J]. 航空发动机, 2016, 42(1):42-47. ZHAO W Z, CHEN Z Y. Research on finite element simulation technology of fuel pipe system vibration characteristics[J]. Aeroengine, 2016, 42(1):42-47(in Chinese). [40] 朴玉华. 航空发动机外部管路建模与动力学特性研究[D]. 沈阳:东北大学, 2018:61-89. PIAO Y H. Research on modeling and dynamic characteristics of aero-engine external pipes[D]. Shenyang:Northeastern University, 2018:61-89(in Chinese). [41] 李占营, 王建军, 邱明星. 航空发动机管路流固耦合振动的固有频率分析[J]. 航空发动机, 2017, 43(1):66-70. LI Z Y, WANG J J, QIU M X. Analysis for natural frequencies of pipe conveying fluid considering fluid-structure interaction[J]. Aeroengine, 2017, 43(1):66-70(in Chinese). [42] 李占营, 王建军, 邱明星. 航空发动机空间管路系统的流固耦合振动特性[J]. 航空动力学报, 2016, 31(10):2346-2352. LI Z Y, WANG J J, QIU M X. Dynamic characteristics of aero-engine pipe system considering fluid-structure coupling[J]. Journal of Aerospace Power, 2016, 31(10):2346-2352(in Chinese). [43] 李占营, 王建军, 邱明星. 基于有限元法的输液管路稳定性可靠性研究[J]. 航空动力学报, 2017, 32(12):2903-2909. LI Z Y, WANG J J, QIU M X. Research on stability reliability of pipe conveying fluid based on finite element method[J]. Journal of Aerospace Power, 2017, 32(12):2903-2909(in Chinese). [44] 李继世, 张大义, 王立, 等. 考虑流体介质影响的管路模态特性分析[J]. 航空动力学报, 2019, 34(3):671-677. LI J S, ZHANG D Y, WANG L, et al. Modal characteristics analysis for pipelines considering influence of fluid medium[J]. Journal of Aerospace Power, 2019, 34(3):671-677(in Chinese). [45] 陈果, 罗云, 郑其辉, 等. 复杂空间载流管道系统流固耦合动力学模型及其验证[J]. 航空学报, 2013, 34(3):597-609. CHEN G, LUO Y, ZHENG Q H, et al. Fluid-structure coupling dynamic model of complex spatial fluid-conveying pipe system and its verification[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):597-609(in Chinese). [46] GAO P X, ZHAI J Y, YAN Y Y, et al. A model reduction approach for the vibration analysis of hydraulic pipeline system in aircraft[J]. Aerospace Science and Technology, 2016, 49:144-153. [47] GAO P X, ZHANG Y L, LIU X F, et al. Vibration analysis of aero parallel-pipeline systems based on a novel reduced order modeling method[J]. Journal of Mechanical Science and Technology, 2020, 34(8):3137-3146. [48] GAO P X, ZHAI J Y, QU F Z, et al. Vibration and damping analysis of aerospace pipeline conveying fluid with constrained layer damping treatment[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018, 232(8):1529-1541. [49] DING H, JI J C, CHEN L Q. Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics[J]. Mechanical Systems and Signal Processing, 2019, 121:675-688. [50] TAN X, DING H. Parametric resonances of Timoshenko pipes conveying pulsating high-speed fluids[J]. Journal of Sound and Vibration, 2020, 485:115594. [51] TAN X, DING H, CHEN L Q. Nonlinear frequencies and forced responses of pipes conveying fluid via a coupled Timoshenko model[J]. Journal of Sound and Vibration, 2019, 455:241-255. [52] 权凌霄, 孔祥东, 俞滨, 等. 液压管路流固耦合振动机理及控制研究现状与发展[J]. 机械工程学报, 2015, 51(18):175-183. QUAN L X, KONG X D, YU B, et al. Research status and trends on fluid-structure interaction vibration mechanism and control of hydraulic pipeline[J]. Journal of Mechanical Engineering, 2015, 51(18):175-183(in Chinese). [53] OUYANG X P, GAO F, YANG H Y, et al. Two-dimensional stress analysis of the aircraft hydraulic system pipeline[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2012, 226(5):532-539. [54] OUYANG X P, GAO F, YANG H Y, et al. Modal analysis of the aircraft hydraulic-system pipeline[J]. Journal of Aircraft, 2012, 49(4):1168-1174. [55] ZHANG Q W, KONG X D, HUANG Z P, et al. Fluid-structure-interaction analysis of an aero hydraulic pipe considering friction coupling[J]. IEEE Access, 2019, 7:26665-26677. [56] 权凌霄, 孙冰江, 赵劲松, 等. 航空弯曲液压管路流固耦合振动频响分析[J]. 西北工业大学学报, 2018, 36(3):487-495. QUAN L X, SUN B J, ZHAO J S, et al. Frequency response analysis of fluid-structure interaction vibration in aircraft bending hydraulic pipe[J]. Journal of Northwestern Polytechnical University, 2018, 36(3):487-495(in Chinese). [57] FERRAS D, MANSO P, SCHLEISS A, et al. One-dimensional fluid-structure interaction models in pressurized fluid-filled pipes:A review[J]. Applied Sciences, 2018, 8(10):1844. [58] 郭长虹, 郭海鑫, 权凌霄, 等. 航空液压管路流固耦合振动传递矩阵模型分析[J]. 高技术通讯, 2017, 27(S2):966-974. GUO C H, GUO H X, QUAN L X, et al. Fluid-solid coupling vibration transfer matrix model analysis of aviation hydraulic pipeline[J]. Chinese High Technology Letters, 2017, 27(Sup 2):966-974(in Chinese). [59] 焦宗夏. 飞机液压能源管路系统的振动特性分析[J]. 北京航空航天大学学报, 1997, 23(3):316-321. JIAO Z X. Vibration analysis of the aircraft fluid power and pipeline systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 1997, 23(3):316-321(in Chinese). [60] XU Y Z, JIAO Z X. Exact solution of axial liquid-pipe vibration with time-line interpolation[J]. Journal of Fluids and Structures, 2017, 70:500-518. [61] 李军, 陈明, 赵怀军. 液压脉冲系统的压力瞬态脉动仿真研究[J]. 机床与液压, 2007, 35(1):122-124, 164. LI J, CHEN M, ZHAO H J. Simulation research of transient impulse of pressure in hydraulic impulse system[J]. Machine Tool & Hydraulics, 2007, 35(1):122-124, 164(in Chinese). [62] 张乐迪, 张显余. 飞机液压管道流固耦合振动特性及动响应分析[J]. 科学技术与工程, 2014, 14(28):153-158. ZHANG L D, ZHANG X Y. Aircraft hydraulic piping vibration characteristics of fluid-structure coupling and dynamic response analysis[J]. Science Technology and Engineering, 2014, 14(28):153-158(in Chinese). [63] 周红, 刘永寿, 邵小军, 等. 飞机液压管路冲击响应分析[J]. 航空计算技术, 2010, 40(4):1-3. ZHOU H, LIU Y S, SHAO X J, et al. Hammer response analysis in airplane hydraulic pipeline[J]. Aeronautical Computing Technique, 2010, 40(4):1-3(in Chinese). [64] GAO P X, ZHAI J Y, HAN Q K. Dynamic response analysis of aero hydraulic pipeline system under pump fluid pressure fluctuation[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(5):1585-1595. [65] GAO P X, QU H Q, ZHANG Y L, et al. Experimental and numerical vibration analysis of hydraulic pipeline system under multiexcitations[J]. Shock and Vibration, 2020, 2020:3598374. [66] LIU X D, SUN W, GAO Y, et al. Optimization of pipeline system with multi-hoop supports for avoiding vibration, based on particle swarm algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2021, 235(9):1524-1538. [67] 贾志刚, 陈志英. 基于参数化的航空发动机管路调频方法研究[J]. 航空发动机, 2008, 34(4):34-37. JIA Z G, CHEN Z Y. Investigation of frequency modulation for aeroengine pipeline based on parameterization[J]. Aeroengine, 2008, 34(4):34-37(in Chinese). [68] 郭家良, 王维, 贾文强, 等. 航空发动机外部管路调频方法研究[J]. 航空发动机, 2017, 43(6):33-38. GUO J L, WANG W, JIA W Q, et al. Investigation on frequency modulation methods of aeroengine external pipe[J]. Aeroengine, 2017, 43(6):33-38(in Chinese). [69] 李会娜, 高庆, 江雅婷, 等. 发动机长悬臂管路动力学特性优化及试验验证[J]. 航天器环境工程, 2015, 32(4):400-403. LI H N, GAO Q, JIANG Y T, et al. Dynamics optimization and experimental validation of the long cantilever engine pipelines[J]. Spacecraft Environment Engineering, 2015, 32(4):400-403(in Chinese). [70] GAO P X, LI J W, ZHAI J Y, et al. A novel optimization layout method for clamps in a pipeline system[J]. Applied Sciences, 2020, 10(1):390. [71] ZHAI H B, LI B H, JIANG Z F, et al. Supports' dynamical optimized design for the external pipeline of aircraft engine[J]. Advanced Materials Research, 2010, 139-141:2456-2459. [72] 冯凯, 郝勇, 廉正彬. 航空发动机外部管路调频的有限元计算方法[J]. 航空发动机, 2010, 36(1):31-33, 19. FENG K, HAO Y, LIAN Z B. Finite element analysis method of frequency modulation for aeroengine external lines[J]. Aeroengine, 2010, 36(1):31-33, 19(in Chinese). [73] 於为刚, 赵正大, 陈果, 等. 一种管道卡箍位置自动优化方法[J]. 噪声与振动控制, 2019, 39(1):29-33, 40. YU W G, ZHAO Z D, CHEN G, et al. An automatic optimization method of pipeline clamp positions[J]. Noise and Vibration Control, 2019, 39(1):29-33, 40(in Chinese). [74] 柳强, 焦国帅. 基于Kriging模型和NSGA-Ⅱ的航空发动机管路卡箍布局优化[J]. 智能系统学报, 2019, 14(2):281-287. LIU Q, JIAO G S. Layout optimization of aero-engine pipe clamps based on Kriging model and NSGA-Ⅱ[J]. Transactions on Intelligent Systems, 2019, 14(2):281-287(in Chinese). [75] 陈艳秋, 朱梓根. 基于遗传算法的航空发动机管路优化设计[J]. 航空动力学报, 2002, 17(4):421-425. CHEN Y Q, ZHU Z G. Piping system design of aero-engine using genetic algorithms[J]. Journal of Aerospace Power, 2002, 17(4):421-425(in Chinese). [76] ZHANG X T, LIU W, ZHANG Y M, et al. Experimental investigation and optimization design of multi-support pipeline system[J]. Chinese Journal of Mechanical Engineering, 2021, 34:10. [77] 李鑫, 王少萍. 基于卡箍优化布局的飞机液压管路减振分析[J]. 振动与冲击, 2013, 32(1):14-20. LI X, WANG S P. Vibration control analysis for hydraulic pipelines in an aircraft based on optimized clamp layout[J]. Journal of Vibration and Shock, 2013, 32(1):14-20(in Chinese). [78] 彭刚, 于乃江, 贾文强. 航空发动机外部管路的结构与动力学特征参数分析[J]. 航空发动机, 2017, 43(5):1-6. PENG G, YU N J, JIA W Q. Analysis of structural and dynamical characteristic parameters of external pipes for aeroengine[J]. Aeroengine, 2017, 43(5):1-6(in Chinese). [79] 刘伟, 曹刚, 翟红波, 等. 发动机管路卡箍位置动力灵敏度分析与优化设计[J]. 航空动力学报, 2012, 27(12):2756-2762. LIU W, CAO G, ZHAI H B, et al. Sensitivity analysis and dynamic optimization design of supports' positions for engine pipelines[J]. Journal of Aerospace Power, 2012, 27(12):2756-2762(in Chinese). [80] 徐培原, 刘伟. 发动机外部管路系统的卡箍布局多目标优化[J]. 航空发动机, 2020, 46(6):46-52. XU P Y, LIU W. Multi-objective optimization of clamps layout for engine external pipeline system[J]. Aeroengine, 2020, 46(6):46-52(in Chinese). [81] ZHANG Z, ZHOU C C, WANG W X, et al. Optimization design of aeronautical hydraulic pipeline system based on non-probabilistic sensitivity analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part O:Journal of Risk and Reliability, 2019, 233(5):815-825. [82] WANG W X, ZHOU C C, GAO H S, et al. Application of non-probabilistic sensitivity analysis in the optimization of aeronautical hydraulic pipelines[J]. Structural and Multidisciplinary Optimization, 2018, 57(6):2177-2191. [83] TANG Z C, LU Z Z, LI D W, et al. Optimal design of the positions of the hoops for a hydraulic pipelines system[J]. Nuclear Engineering and Design, 2011, 241(12):4840-4855. [84] KWONG A M, EDGE K A. A method to reduce noise in hydraulic systems by optimizing pipe clamp locations[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 1998, 212(4):267-280. [85] LIU Q, WANG C G. A graph-based pipe routing algorithm in aero-engine rotational space[J]. Journal of Intelligent Manufacturing, 2015, 26(6):1077-1083. [86] LIU Q, WANG C G. Multi-terminal pipe routing by Steiner minimal tree and particle swarm optimisation[J]. Enterprise Information Systems, 2012, 6(3):315-327. [87] WANG C G, LIU Q. Projection and geodesic-based pipe routing algorithm[J]. IEEE Transactions on Automation Science and Engineering, 2011, 8(3):641-645. [88] LIU Q. A rectilinear pipe routing algorithm:Manhattan visibility graph[J]. International Journal of Computer Integrated Manufacturing, 2016, 29(2):202-211. [89] LIU Q, JIAO G S. A pipe routing method considering vibration for aero-engine using kriging model and NSGA-II[J]. IEEE Access, 2018, 6:6286-6292. |