航空学报 > 2022, Vol. 43 Issue (5): 25332-025332   doi: 10.7527/S1000-6893.2021.25332

航空发动机管路系统动力学特性综述

汪博1, 高培鑫2, 马辉1,3, 孙伟1, 林君哲1, 李晖1, 韩清凯1, 刘中华4   

  1. 1. 东北大学 机械工程与自动化学院, 沈阳 110819;
    2. 烟台大学 机电汽车工程学院, 烟台 264005;
    3. 东北大学 航空动力装备振动及控制教育部重点实验室, 沈阳 110819;
    4. 空装驻沈阳地区第二军事代表室, 沈阳 110043
  • 收稿日期:2021-01-26 修回日期:2021-02-28 发布日期:2021-04-21
  • 通讯作者: 马辉 E-mail:mahui_2007@163.com
  • 基金资助:
    国家自然科学基金(51805462);航空发动机及燃气轮机重大专项基础研究项目(J2019-I-0008-0008)

Dynamic characteristics of aero-engine pipeline system: Review

WANG Bo1, GAO Peixin2, MA Hui1,3, SUN Wei1, LIN Junzhe1, LI Hui1, HAN Qingkai1, LIU Zhonghua4   

  1. 1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China;
    2. School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China;
    3. Key Laboratory of Vibration and Control of Aero-Propulsion Systems, Ministry of Education, Northeastern University, Shenyang 110819, China;
    4. Shenyang Area 2nd Military Pepresentative Room of Air Force Equipment Department, Shenyang 110043, China
  • Received:2021-01-26 Revised:2021-02-28 Published:2021-04-21
  • Supported by:
    National Natural Science Foundation of China (51805462); National Major Projects of Aero-engines and Gas Turbines (J2019-I-0008-0008)

摘要: 航空发动机管路系统主要承受来自机匣和管内流体的耦合激励作用,不同位置机匣传递的基础激励不同,如高低压转子振动、气动载荷、燃烧室火焰脉动和气动噪声激励等,管内流体激励包括介质压力脉动及管路形状改变造成的介质冲击载荷等;同时不同管型的管路通过卡箍、支架、接头等连接部件与机匣和附件相连,存在大量的结构耦合,这些都极易引发管路系统在多源载荷激励下的振动超限,诱发管路及卡箍产生裂纹等故障。为了提高管路系统服役期间的可靠性,在设计阶段需要开展动力学优化设计,并提出相应的设计标准及规范。目前管路系统动力学方面的研究主要聚焦在飞机、舰船及其他输油管路,针对航空发动机管路系统动力学特性的研究相对较少,对管路系统主要支撑部件卡箍静力学及动力学特性表征、弹支边界管路系统动力学特性、流固耦合管路系统动力学特性及管路系统动力学优化这4个方面的研究现状进行了总结与展望,旨在为航空发动机复杂管路系统设计及振动控制提供理论支持和技术指导。

关键词: 航空发动机, 管路系统, 动力学, 卡箍刚度, 卡箍阻尼, 流固耦合

Abstract: The aero-engine pipeline system is mainly affected by the coupling excitations from both external and internal loads. The external loads transferred to the engine casing include the high pressure and low pressure rotor vibrations, aerodynamic load, combustion chamber flame pulsation and aerodynamic noise excitations, while the internal fluid excitations involve fluid pulsating pressure and impact load caused by the pipeline shape change. Meanwhile, pipelines of different types are connected to the casing and accessories through clamps, supports and brackets, producing considerable structure coupling. These could easily induce excessive vibrations of the pipeline system under multi-source excitations, resulting in crack fatigue faults in pipelines and clamps, necessitating investigation into the dynamic characteristic optimization analysis in the design stage to improve the reliability of the pipeline system and propose the design standards and specifications. Previous dynamics analysis of the pipeline system mainly focused on that of aircraft, ships and other oil pipelines, with few works on aero-engine pipeline systems. The studies on dynamic characteristics of aero-engine pipeline-clamps are reviewed and prospected, including static and dynamic characteristic representations of clamps, dynamic characteristics of different type pipeline systems with elastic support boundaries, fluid-pipelines dynamics, and dynamic optimization of pipeline systems. Finally, theoretical and technical suggestions on the dynamic design and vibration control of aero-engine complex pipeline systems are proposed.

Key words: aero-engines, pipeline systems, dynamic, clamp stiffness, clamp damping, fluid-structure coupling

中图分类号: