周岩, 罗振兵, 王林, 夏智勋, 高天翔, 谢玮, 邓雄, 彭文强, 程盼
收稿日期:
2020-11-30
修回日期:
2020-12-28
出版日期:
2022-03-15
发布日期:
2021-02-24
通讯作者:
罗振兵
E-mail:luozhenbing@163.com
基金资助:
ZHOU Yan, LUO Zhenbing, WANG Lin, XIA Zhixun, GAO Tianxiang, XIE Wei, DENG Xiong, PENG Wenqiang, CHENG Pan
Received:
2020-11-30
Revised:
2020-12-28
Online:
2022-03-15
Published:
2021-02-24
Supported by:
摘要: 等离子体合成射流(PSJ)激励器是通过半封闭容腔内电弧放电的温升及压升作用产生高温高速零质量射流的装置,具有射流速度高、边界层穿透能力强、响应速度快、激励频带宽、无活动部件等优势,是一种应用前景广泛的新型主动流动控制激励器。对等离子体合成射流激励器近些年来的研究进展进行了综述,重点综述了激励器在增大控制能力、提高能量效率、拓展环境适应性等方面所进行的优化设计,介绍了激励器研究中所发展的创新手段,并对激励器的能量效率特性和参数影响规律进行了归纳总结。重点综述了等离子体合成射流激励器在横向主流干扰、分离流控制、激波控制、激波/边界层干扰控制等应用领域的研究进展,深入探讨了等离子体合成射流与横向主流、分离泡、激波等典型流场结构的耦合作用机理,分析了等离子体合成射流主动流动控制存在的动量注入效应、冲击波效应、局部加热效应等复杂作用机制,并对未来的研究方向进行了探讨。
中图分类号:
周岩, 罗振兵, 王林, 夏智勋, 高天翔, 谢玮, 邓雄, 彭文强, 程盼. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 25027.
ZHOU Yan, LUO Zhenbing, WANG Lin, XIA Zhixun, GAO Tianxiang, XIE Wei, DENG Xiong, PENG Wenqiang, CHENG Pan. Plasma synthetic jet actuator for flow control: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 25027.
[1] GLEZER A, AMITAY M. Synthetic jets[J].Annual Review of Fluid Mechanics, 2002, 34(1):503-529. [2] WANG L, LUO Z B, XIA Z X, et al. Review of actuators for high speed active flow control[J].Science China Technological Sciences, 2012, 55(8):2225-2240. [3] 聂万胜, 程钰锋, 车学科. 介质阻挡放电等离子体流动控制研究进展[J].力学进展, 2012, 42(6):722-734. NIE W S, CHENG Y F, CHE X K. A review on dielectric barrier discharge plasma flow control[J].Advances in Mechanics, 2012, 42(6):722-734(in Chinese). [4] WANG J J, CHOI K S, FENG L H, et al. Recent developments in dbd plasma flow control[J].Progress in Aerospace Sciences, 2013, 62:52-78. [5] 吴云, 李应红. 等离子体流动控制与点火助燃研究进展[J].高电压技术, 2014, 40(7):2024-2038. WU Y, LI Y H. Progress in research of plasma-assisted flow control, ignition and combustion[J].High Voltage Engineering, 2014, 40(7):2024-2038(in Chinese). [6] BLETZINGER P, GANGULY B N, VAN WIE D, et al. Plasmas in high speed aerodynamics[J].Journal of Physics D:Applied Physics, 2005, 38(4):33. [7] 吴云, 李应红. 等离子体流动控制研究进展与展望[J].航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(2):381-405(in Chinese). [8] ROTH J, SHERMAN D, WILKINSON S. Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma[C]//36th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1998. [9] CORKE T C, ENLOE C L, WILKINSON S P. Dielectric barrier discharge plasma actuators for flow control[J].Annual Review of Fluid Mechanics, 2010, 42(1):505-529. [10] IM S, DO H, CAPPELLI M A. Dielectric barrier discharge control of a turbulent boundary layer in a supersonic flow[J].Applied Physics Letters, 2010, 97(4):041503. [11] LIU A B, ZHANG P F, YAN B, et al. Flow characteristics of synthetic jet induced by plasma actuator[J].AIAA Journal, 2011, 49(3):544-553. [12] NISHIHARA M, TAKASHIMA K, RICH J W, et al. Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge[J].Physics of Fluids, 2011, 23(6):066101. [13] CAI J S, TIAN Y Q, MENG X S, et al. An experimental study of icing control using DBD plasma actuator[J].Experiments in Fluids, 2017, 58(8):1-8. [14] SHANG J S, SURZHIKOV S T, KIMMEL R, et al. Mechanisms of plasma actuators for hypersonic flow control[J].Progress in Aerospace Sciences, 2005, 41(8):642-668. [15] LEONOV S, BITYURIN V, YARANTSEV D, et al. High-speed flow control due to interaction with electrical discharges[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston:AIAA, 2005. [16] LEONOV S, YARANTSEV D, SOLOVIEV V. High-speed inlet customization by surface electrical discharge[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2006. [17] 王健, 李应红, 程邦勤, 等. 等离子体气动激励控制激波的实验研究[J].航空学报, 2009, 30(8):1374-1379. WANG J, LI Y H, CHENG B Q, et al. Experimental investigation on shock wave control by plasma aerodynamic actuation[J].Acta Aeronautica et Astronautica Sinica, 2009, 30(8):1374-1379(in Chinese). [18] YAN H, LIU F, XU J, et al. Study of oblique shock wave control by surface arc discharge plasma[J].AIAA Journal, 2018, 56(2):532-541. [19] SUN Q, LI Y H, CUI W, et al. Shock wave-boundary layer interactions control by plasma aerodynamic actuation[J].Science China Technological Sciences, 2014, 57(7):1335-1341. [20] MOREAU E. Airflow control by non-thermal plasma actuators[J].Journal of Physics D:Applied Physics, 2007, 40(3):605. [21] KHODATAEV K V. Microwave discharges and possible applications in aerospace technologies[J].Journal of Propulsion and Power, 2008, 24(5):962-972. [22] 洪延姬, 李倩, 方娟, 等. 激光等离子体减阻技术研究进展[J].航空学报, 2010, 31(1):93-101. HONG Y J, LI Q, FANG J, et al. Advances in study of laser plasma drag reduction technology[J].Acta Aeronautica et Astronautica Sinica, 2010, 31(1):93-101(in Chinese). [23] CARUANA D, BARRICAU P, HARDY P. The "plasma synthetic jet" actuator. aero-thermodynamic characterization and first flow control applications[C]//47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009. [24] GROSSMAN K, BOHDAN C, VANWIE D. Sparkjet actuators for flow control[C]//41 st Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2003. [25] NARAYANASWAMY V, RAJA L L, CLEMENS N T. Characterization of a high-frequency pulsed-plasma jet actuator for supersonic flow control[J].AIAA Journal, 2010, 48(2):297-305. [26] SANTHANAKRISHNAN A, JACOB J D. Flow control with plasma synthetic jet actuators[J].Journal of Physics D:Applied Physics, 2007, 40(3):637. [27] BENARD N, BALCON N, TOUCHARD G, et al. Control of diffuser jet flow:turbulent kinetic energy and jet spreading enhancements assisted by a non-thermal plasma discharge[J].Experiments in Fluids, 2008, 45(2):333-355. [28] 张攀峰, 王晋军, 冯立好. 零质量射流技术及其应用研究进展[J].中国科学(E辑:技术科学), 2008, 38(3):321-349. ZHANG P F, WANG J J, FENG L H. Control of diffuser jet flow:turbulent kinetic energy and jet spreading enhancements assisted by a non-thermal plasma discharge[J].Science in China (Series E:Technological Sciences), 2008, 38(3):321-349(in Chinese). [29] CYBYK B, GROSSMAN K, VAN WIE D. Computational assessment of the SparkJet flow control actuator[C]//33rd AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2003. [30] CYBYK B, GROSSMAN K, WILKERSON J. Performance characteristics of the SparkJet flow control actuator[C]//2nd AIAA Flow Control Conference. Reston:AIAA, 2004. [31] GROSSMAN K, CYBYK B, VANWIE D, et al. Characterization of SparkJet actuators for flow control[C]//42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2004. [32] CYBYK B, GROSSMAN K, WILKERSON J, et al. Single-pulse performance of the SparkJet flow control actuator[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005. [33] CYBYK B, LAND H, SIMON D, et al. Experimental characterization of a supersonic flow control actuator[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2006. [34] CYBYK B, WILKERSON J, SIMON D. Enabling high-fidelity modeling of a high-speed flow control actuator array[C]//14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2006. [35] CYBYK B Z, SIMON D H, LAND I, et al. SparkJet actuators for flow control[R]. Washington, D.C.:Defense Technical Information Center, 2007. [36] HAACK S, LAND B, CYBYK B, et al. Characterization of a high-speed flow control actuator using digital speckle tomography and PIV[C]//4th Flow Control Conference. Reston:AIAA, 2008. [37] TAYLOR T, CYBYK B. High-fidelity modeling of micro-scale flow-control devices with applications to the macro-scale environment[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2008. [38] KO H S, HAACK S J, LAND H B, et al. Analysis of flow distribution from high-speed flow actuator using particle image velocimetry and digital speckle tomography[J].Flow Measurement and Instrumentation, 2010, 21(4):443-453. [39] HAACK S, TAYLOR T, EMHOFF J, et al. Development of an analytical SparkJet model[C]//5th Flow Control Conference. Reston:AIAA, 2010. [40] HAACK S, TAYLOR T, CYBYK B, et al. Experimental estimation of SparkJet efficiency[C]//42nd AIAA Plasmadynamics and Lasers Conference. Reston:AIAA, 2011. [41] POPKIN S H, TAYLOR T M, CYBYK B Z. Development and application of the SparkJet actuator for high-speed flow control[J].Johns Hopkins APL Technical Digest, 2013, 32(1):404-418. [42] POPKIN S H, CYBYK B, LAND B, et al. Recent performance-based advances in SparkJet actuator design for supersonic flow applications[C]//51 st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2013. [43] POPKIN S H. One-dimensional analytical model development of a plasma-based actuator[D]. Maryland:University of Maryland, 2014. [44] HAACK S, TAYLOR T, CYBYK B, et al. Experimental estimation of SparkJet efficiency[C]//42nd AIAA Plasmadynamics and Lasers Conference. Reston:AIAA, 2011. [45] NARAYANASWAMY V, SHIN J, CLEMENS N, et al. Investigation of plasma-generated jets for supersonic flow control[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2008. [46] NARAYANASWAMY V, CLEMENS N, RAJA L. Investigation of a pulsed-plasma jet for shock/boundary layer cCntrol[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2010. [47] NARAYANASWAMY V, CLEMENS N, RAJA L. Investigation of pulsed plasma jet for supersonic flow control:AIAA-2010-1089[R]. Reston:AIAA, 2008. [48] NARAYANASWAMY V, CLEMENS N T, RAJA L L. Method for acquiring pressure measurements in presence of plasma-induced interference for supersonic flow control applications[J].Measurement Science and Technology, 2011, 22(12):125107. [49] NARAYANASWAMY V, RAJA L L, CLEMENS N T. Control of a shock/boundary-layer interaction by using a pulsed-plasma jet actuator[J].AIAA Journal, 2012, 50(1):246-249. [50] NARAYANASWAMY V, RAJA L L, CLEMENS N T. Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator[J].Physics of Fluids, 2012, 24(7):076101. [51] GREENE B, CLEMENS N, MICKA D. Control of shock boundary layer interaction using pulsed plasma jets[C]//51 st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2013. [52] GREENE B R, CLEMENS N T, MAGARI P, et al. Control of mean separation in shock boundary layer interaction using pulsed plasma jets[J].Shock Waves, 2015, 25(5):495-505. [53] GREENE B R, CLEMENS N T, MAGARI P, et al. Effect of pulsed plasma jets on boundary layer recovery downstream of a reflected shock wave-boundary layer interaction[C]//46th AIAA Plasmadynamics and Lasers Conference. Reston:AIAA, 2015. [54] HARDY P, BARRICAU P, CARUANA D, et al. Plasma synthetic jet for flow control[C]//40th Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2010. [55] CARUANA D. Plasmas for aerodynamic control[J].Plasma Physics and Controlled Fusion, 2010, 52(12):124045. [56] BELINGER A, HARDY P, BARRICAU P, et al. Influence of the energy dissipation rate in the discharge of a plasma synthetic jet actuator[J].Journal of Physics D-Applied Physics, 2011, 44(36):365201. [57] BELINGER A, HARDY P, GHERARDI N, et al. Influence of the spark discharge size on a plasma synthetic jet actuator[J].IEEE Transactions on Plasma Science, 2011, 39(11):2334-2335. [58] QUINT G, ROGIER F, DUFOUR G. Numerical modelling of the electrical arc created inside the cavity of the PSJ actuator[C]//20th AIAA Computational Fluid Dynamics Conference. Reston:AIAA, 2011. [59] DUFOUR G, HARDY P, QUINT G, et al. Physics and models for plasma synthetic jets[J].International Journal of Aerodynamics, 2013, 3(1/2/3):47. [60] CARUANA D, BARRICAU P, GLEYZES C. Separation control with plasma synthetic jet actuators[J].International Journal of Aerodynamics, 2013, 3(1/2/3):71. [61] CARUANA D, ROGIER F, DUFOUR G, et al. The plasma synthetic jet actuator, physics, modeling and flow control application on separation[J].Journal Aerospace Lab, 2013, 6:AL06-10. [62] BELINGER A, NAUDE N, CAMBRONNE J P, et al. Plasma synthetic jet actuator:electrical and optical analysis of the discharge[J].Journal of Physics D-Applied Physics, 2014, 47(34):345202. [63] SARY G, DUFOUR G, ROGIER F, et al. Modeling and parametric study of a plasma synthetic jet for flow control[J].AIAA Journal, 2014, 52(8):1591-1603. [64] LAURENDEAU F, CHEDEVERGNE F, CASALIS G. Transient ejection phase modeling of a Plasma Synthetic Jet actuator[J].Physics of Fluids, 2014, 26(12):125101. [65] CHEDEVERGNE F, LÉON O, BODOC V, et al. Experimental and numerical response of a high-Reynolds-number M=0.6 jet to a Plasma Synthetic Jet actuator[J].International Journal of Heat and Fluid Flow, 2015, 56:1-15. [66] LAURENDEAU F, CHEDEVERGNE F, LÉON O. PIV and electric characterization of a plasma synthetic jet actuator[C]//45th AIAA Fluid Dynamics Conference. Reston:AIAA, 2015. [67] LAURENDEAU F, LÉON O, CHEDEVERGNE F, et al. Particle image velocimetry experiment analysis using large-eddy simulation:application to plasma actuators[J].AIAA Journal, 2017, 55(11):3767-3780. [68] EMERICK T M, ALI M Y, FOSTER C H, et al. SparkJet actuator characterization in supersonic crossflow:AIAA-2012-2814[R]. Reston:AIAA, 2012. [69] EMERICK T, ALI M, FOSTER C, et al. SparkJet actuator characterization in supersonic crossflow[C]//6th AIAA Flow Control Conference. Reston:AIAA, 2012. [70] EMERICK T, ALI M Y, FOSTER C, et al. SparkJet characterizations in quiescent and supersonic flowfields[J].Experiments in Fluids, 2014, 55(12):1-21. [71] REEDY T M, KALE N V, DUTTON J C, et al. Experimental characterization of a pulsed plasma jet[J].AIAA Journal, 2013, 51(8):2027-2031. [72] REEDY T M, KALE N V, DUTTON J C, et al. Experimental characterization of a pulsed plasma jet[J].AIAA Journal, 2013, 51(8):2027-2031. [73] OSTMAN R, HERGES T, DUTTON J C, et al. Effect on high speed boundary layer characteristics from plasma actuators[C]//51 st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2013. [74] ANDERSON K V, KNIGHT D D. Plasma jet for flight control[J].AIAA Journal, 2012, 50(9):1855-1872. [75] ANDERSON K. Characterization of spark jet for flight control[D]. New Brunswick:The State University of New Jersey, 2012. [76] GOLBABAEI-ASL M, KNIGHT D, ANDERSON K, et al. SparkJet efficiency[C]//51 st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2013. [77] GOLBABAEI-ASL M, KNIGHT D, WILKINSON S. Novel technique to determine SparkJet efficiency[J].AIAA Journal, 2014, 53(2):501-504. [78] ZONG H H, KOTSONIS M. Electro-mechanical efficiency of plasma synthetic jet actuator driven by capacitive discharge[J].Journal Physics D:Applied Physics, 2016, 49(45):455201. [79] ZONG H H, KOTSONIS M. Effect of slotted exit orifice on performance of plasma synthetic jet actuator[J].Experiments in Fluids, 2017, 58(3):1-17. [80] ZONG H H, KOTSONIS M. Interaction between plasma synthetic jet and subsonic turbulent boundary layer[J].Physics of Fluids, 2017, 29(4):045104. [81] ZONG H H, KOTSONIS M. Realisation of plasma synthetic jet array with a novel sequential discharge[J].Sensors and Actuators A:Physical, 2017, 266:314-317. [82] ZONG H H, KOTSONIS M. Experimental investigation on frequency characteristics of plasma synthetic jets[J].Physics of Fluids, 2017, 29(11):115107. [83] ZONG H H, PELT T, KOTSONIS M. Airfoil flow separation control with plasma synthetic jets at moderate Reynolds number[J].Experiments in Fluids, 2018, 59(11):1-19. [84] ZONG H H, CHIATTO M, KOTSONIS M, et al. Plasma synthetic jet actuators for active flow control[J].Actuators, 2018, 7(4):77. [85] ZONG H H. Influence of nondimensional heating volume on efficiency of plasma synthetic jet actuators[J].AIAA Journal, 2017, 56(5):2075-2078. [86] ZONG H H, KOTSONIS M. Formation, evolution and scaling of plasma synthetic jets[J].Journal of Fluid Mechanics, 2018, 837:147-181. [87] ZONG H H, KOTSONIS M. Effect of velocity ratio on the interaction between plasma synthetic jets and turbulent cross-flow[J].Journal of Fluid Mechanics, 2019, 865:928-962. [88] 罗振兵, 王林, 夏智勋, 等. 动压式高能合成射流激励器:CN102014567A[P]. 2011-04-13. LUO Z B, WANG L, XIA Z X, et al. Dynamical pressure type high-energy synthetic jet actuator:CN102014567A[P]. 2011-04-13(in Chinese). [89] 罗振兵, 夏智勋, 王林. 高能合成射流激励器设计思想及超声速流矢量控制初探[C]//第十三届全国分离流、旋涡和流动控制会议, 2010. LUO Z B, XIA Z X, WANG L. Design philosophy of high-energy synthetic jet and the application in supersonic flow vector control[C]//13th National Separation Flow, Vortex and Flow Control Conference, 2010(in Chinese). [90] 罗振兵, 夏智勋, 王林, 等. 新概念等离子体高能合成射流快响应直接力技术[C]//2013中国力学大会论文集, 2013. LUO Z B, XIA Z X, WANG L. Fast response direct force control technology of new concept plasma synthetic jet[C]//Proceedings of 2013 Chinese Congress on Mechanics, 2013(in Chinese). [91] 王林, 罗振兵, 夏智勋, 等. 等离子体合成射流能量效率及工作特性研究[J].物理学报, 2013, 62(12):125207. WANG L, LUO Z B, XIA Z X, et al. Energy efficiency and performance characteristics of plasma synthetic jet[J].Acta Physica Sinica, 2013, 62(12):125207(in Chinese). [92] 罗振兵, 夏智勋, 王林, 等. 基于高超声速流能量利用的零能耗零质量合成射流装置:Zl201410324990.4.[P]. 2014. LUO Z B, XIA Z X, WANG L, et al. Zero energy consumption and zero mass flux synthetic jet device base on hypersonic energy comprehensive utilization:Zl201410324990.4.[P]. 2014(in Chinese). [93] 王林. 等离子体高能合成射流及其超声速流动控制机理研究[D]. 长沙:国防科学技术大学, 2014. WANG L. Principle of plasma high-energy synthetic jet and supersonic flow control[D]. Changsha:National University of Defense Technology, 2014(in Chinese). [94] WANG L, XIA Z X, LUO Z B, et al. Three-electrode plasma synthetic jet actuator for high-speed flow control[J].AIAA Journal, 2014, 52(4):879-882. [95] WANG L, XIA Z X, LUO Z B, et al. Effect of pressure on the performance of plasma synthetic jet actuator[J].Science China Physics, Mechanics & Astronomy, 2014, 57(12):2309-2315. [96] 王林, 夏智勋, 罗振兵, 等. 两电极等离子体合成射流激励器工作特性研究[J].物理学报, 2014, 63(19):227-238. WANG L, XIA Z X, LUO Z B, et al. Experimental study on the characteristics of a two-electrode plasma synthetic jet actuator[J].Acta Physica Sinica, 2014, 63(19):227-238(in Chinese). [97] 王林, 周岩, 罗振兵, 等. 并联放电等离子体合成射流激励器工作特性[J].国防科技大学学报, 2018, 40(4):59-66. WANG L, ZHOU Y, LUO Z B, et al. Characteristics of plasma synthetic jet actuator array in parallel[J].Journal of National University of Defense Technology, 2018, 40(4):59-66(in Chinese). [98] 周岩, 刘冰, 王林, 等.等离子体合成射流激励器性能及环境压力影响仿真研究[C]//第十五届分离流、旋涡和流动控制会议, 2014. ZHOU Y, LIU B, WANG L. Simulation on the performance of plasma synthetic jet actuator and the influence of pressure[C]//15th National Separation Flow, Vortex and Flow Control Conference, 2014(in Chinese). [99] 周岩, 刘冰, 王林, 等.串联式等离子体合成射流激励器放电及流场特性实验研究[C]//第十届全国实验流体力学学术会议, 2016. ZHOU Y, LIU B, WANG L. Experimental investigation on discharge and flow characteristics of plasma synthetic jet actuator in series[C]//10th National Conference on Experimental Fluid Mechanics, 2016(in Chinese). [100] 周岩, 刘冰, 罗振兵, 等. 等离子体合成射流与超声速流场干扰特性数值模拟研究[C]//第八届全国流体力学学术会议, 2014. ZHOU Y, LIU B, LUO Z B. Numerical simulation of interaction of plasma synthetic jet with supersonic flow[C]//8th National Conference on Experimental Fluid Mechanics, 2014(in Chinese). [101] 周岩, 刘冰, 罗振兵, 等. 火花放电合成射流与超声速来流相互干扰特性数值模拟研究[J].空气动力学学报, 2016, 34(4):511-516. ZHOU Y, LIU B, LUO Z B, et al. Numerical simulation of interaction of spark discharge synthetic jet with supersonic flow[J].Acta Aerodynamica Sinica, 2016, 34(4):511-516(in Chinese). [102] 周岩, 刘冰, 王林, 等. 两电极等离子体合成射流性能及出口构型影响仿真研究[J].空气动力学学报, 2015, 33(6):799-805. ZHOU Y, LIU B, WANG L, et al. Numerical simulation of performance characteristics of two-electrode plasma synthetic jet and the influence of different actuator orifice shapes[J].Acta Aerodynamica Sinica, 2015, 33(6):799-805(in Chinese). [103] ZHOU Y, XIA Z X, LUO Z B, et al. Effect of three-electrode plasma synthetic jet actuator on shock wave control[J].Science China Technological Sciences, 2017, 60(1):146-152. [104] ZHOU Y, XIA Z X, LUO Z B, et al. A novel ram-air plasma synthetic jet actuator for near space high-speed flow control[J].Acta Astronautica, 2017, 133:95-102. [105] ZHOU Y, XIA Z X, LUO Z B, et al. Experimental characteristics of a two-electrode plasma synthetic jet actuator array in serial[J].Chinese Journal of Aeronautics, 2018, 31(12):2234-2247. [106] 周岩. 新型等离子体合成射流及其激波控制特性研究[D]. 长沙:国防科技大学, 2018. ZHOU Y. Novel plasma synthetic jet and its application in shock wave control[D]. Changsha:National University of Defense Technology, 2018(in Chinese). [107] ZHOU Y, XIA Z X, LUO Z B, et al. Characterization of three-electrode SparkJet actuator for hypersonic flow control[J].AIAA Journal, 2018, 57(2):879-885. [108] ZHOU Y, XIA Z X, WANG L, et al. Discharge and electrothermal efficiency analysis of capacitive discharge plasma synthetic jet actuator in single-shot mode[J].Sensors and Actuators A:Physical, 2019, 287:102-112. [109] 周岩, 夏智勋, 罗振兵, 等. 腔体增压等离子体合成射流激励器工作特性[J].国防科技大学学报, 2019, 41(6):12-18. ZHOU Y, XIA Z X, LUO Z B, et al. Characterization of plasma synthetic jet actuator with cavity pressurization[J].Journal of National University of Defense Technology, 2019, 41(6):12-18(in Chinese). [110] 张宇, 罗振兵, 李海鹏, 等. 激励器结构对三电极等离子体高能合成射流流场及其冲量特性的影响[J].空气动力学学报, 2016, 34(6):783-789. ZHANG Y, LUO Z B, LI H P, et al. Effect of geometric parameters on the flow field and impulse of three-electrode plasma high-energy synthetic jet actuator[J].Acta Aerodynamica Sinica, 2016, 34(6):783-789(in Chinese). [111] 王鹏, 沈赤兵. 等离子体合成射流对超声速混合层的混合增强[J].物理学报, 2019, 68(17):171-181. WANG P, SHEN C B. Mixing enhancement for supersonic mixing layer by using plasma synthetic jet[J].Acta Physica Sinica, 2019, 68(17):171-181(in Chinese). [112] WANG P, SHEN C B. Characteristics of mixing enhancement achieved using a pulsed plasma synthetic jet in a supersonic flow[J].Journal of Zhejiang University-Science A, 2019, 20(9):701-713. [113] 杨瑞, 罗振兵, 夏智勋, 等. 高超声速导弹等离子体合成射流控制数值研究[J].航空学报, 2016, 37(6):1722-1732. YANG R, LUO Z B, XIA Z X, et al. Numerical study of plasma synthetic jet control on hypersonic missile[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1722-1732(in Chinese). [114] 贾敏, 梁华, 宋慧敏, 等. 纳秒脉冲等离子体合成射流的气动激励特性[J].高电压技术, 2011, 37(6):1493-1498. JIA M, LIANG H, SONG H M, et al. Characteristic of the spark discharge plasma jet driven by nanosecond pulses[J].High Voltage Engineering, 2011, 37(6):1493-1498(in Chinese). [115] 刘朋冲, 李军, 贾敏, 等. 等离子体合成射流激励器的流场特性分析[J].空军工程大学学报(自然科学版), 2011, 12(6):22-25. LIU P C, LI J, JIA M, et al. Investigation on flow filed of the plasma synthetic jet device[J].Journal of Air Force Engineering University (Natural Science Edition), 2011, 12(6):22-25(in Chinese). [116] JIN D, LI Y H, JIA M, et al. Experimental characterization of the plasma synthetic jet actuator[J].Plasma Science and Technology, 2013, 15(10):1034-1040. [117] ZHANG Z B, WU Y, JIA M, et al. Influence of the discharge location on the performance of a three-electrode plasma synthetic jet actuator[J].Sensors and Actuators A:Physical, 2015, 235:71-79. [118] ZHU Y F, WU Y, JIA M, et al. Influence of positive slopes on ultrafast heating in an atmospheric nanosecond-pulsed plasma synthetic jet[J].Plasma Sources Science & Technology, 2014, 24(1):015007. [119] ZONG H H, WU Y, LI Y H, et al. Analytic model and frequency characteristics of plasma synthetic jet actuator[J].Physics of Fluids, 2015, 27(2):027105. [120] ZONG H H, CUI W, WU Y, et al. Influence of capacitor energy on performance of a three-electrode plasma synthetic jet actuator[J].Sensors and Actuators A:Physical, 2015, 222:114-121. [121] ZONG H H, WU Y, SONG H M, et al. Investigation of the performance characteristics of a plasma synthetic jet actuator based on a quantitative Schlieren method[J].Measurement Science and Technology, 2016, 27(5):055301. [122] ZONG H H, WU Y, JIA M, et al. Influence of geometrical parameters on performance of plasma synthetic jet actuator[J].Journal of Physics D-Applied Physics, 2015, 49(2):025504. [123] ZONG H H, WU Y, SONG H M, et al. Efficiency characteristic of plasma synthetic jet actuator driven by pulsed direct-current discharge[J].AIAA Journal, 2016, 54(11):3409-3420. [124] LI Y, JIA M, WU Y, et al. Influence of air pressure on the performance of plasma synthetic jet actuator[J].Chinese Physics B, 2016, 25(9):095205. [125] WANG H Y, LI J, JIN D, et al. Manipulation of ramp-induced shock wave/boundary layer interaction using a transverse plasma jet array[J].International Journal of Heat and Fluid Flow, 2017, 67:133-137. [126] WANG H Y, LI J, JIN D, et al. Effect of a transverse plasma jet on a shock wave induced by a ramp[J].Chinese Journal of Aeronautics, 2017, 30(6):1854-1865. [127] 王宏宇, 李军, 金迪, 等. 激波/边界层干扰对等离子体合成射流的响应特性[J].物理学报, 2017, 66(8):084705. WANG H Y, LI J, JIN D, et al. Response of the shock wave/boundary layer interaction to the plasma synthetic jet[J].Acta Physica Sinica, 2017, 66(8):084705(in Chinese). [128] ZHANG Z B, WU Y, JIA M, et al. The multichannel discharge plasma synthetic jet actuator[J].Sensors and Actuators A:Physical, 2017, 253:112-117. [129] ZHANG Z B, WU Y, SUN Z Z, et al. Experimental research on multichannel discharge circuit and multi-electrode plasma synthetic jet actuator[J].Journal Physics D:Applied Physics, 2017, 50(16):165205. [130] ZHANG Z B, WU Y, JIA M, et al. MHD-RLC discharge model and the efficiency characteristics of plasma synthetic jet actuator[J].Sensors and Actuators A:Physical, 2017, 261:75-84. [131] TANG M X, WU Y, WANG H Y, et al. Effects of capacitance on a plasma synthetic jet actuator with a conical cavity[J].Sensors and Actuators A:Physical, 2018, 276:284-295. [132] WANG H Y, LI J, JIN D, et al. High-frequency counter-flow plasma synthetic jet actuator and its application in suppression of supersonic flow separation[J].Acta Astronautica, 2018, 142:45-56. [133] HUANG S F, ZHANG Z B, SONG H M, et al. Analytic model and the influence of actuator number on the performance of plasma synthetic jet actuator array[J].Applied Sciences, 2018, 8(9):1534. [134] 苏志, 李军, 梁华, 等. 多路等离子体合成射流改善翼型性能实验研究[J].推进技术, 2018, 39(9):1928-1937. SU Z, LI J, LIANG H, et al. Experimental investigation of enhancing airfoil aerodynamic performance with multichannel plasma synthetic jet[J].Journal of Propulsion Technology, 2018, 39(9):1928-1937(in Chinese). [135] ZHANG Z B, ZHANG X N, WU Y, et al. Experimental research on the shock wave control based on one power supply driven plasma synthetic jet actuator array[J].Acta Astronautica, 2020, 171:359-368. [136] MIAO H F, ZHANG Z B, WU Y, et al. Semiconductor enhanced plasma synthetic jet actuator[J].Journal of Physics D:Applied Physics, 2021, 54(1):015206. [137] 单勇, 张靖周, 谭晓茗. 火花型合成射流激励器流动特性及其激励参数数值研究[J].航空动力学报, 2011, 26(3):551-557. SHAN Y, ZHANG J Z, TAN X M. Numerical study of the flow characteristics and excitation parameters for the sparkjet actuator[J].Journal of Aerospace Power, 2011, 26(3):551-557(in Chinese). [138] 朱晨彧, 徐惊雷, 张天宏, 等. 火花放电零质量射流激励器射流速度的初步测量[C]//2011中国力学大会论文集, 2011. ZHU C Y, XU J L, ZHANG T H. Preliminary velocity measurement of spark-jet actuator[C]//Proceedings of 2011 Chinese Congress on Mechanics, 2011(in Chinese). [139] LI Z, SHI Z W, DU H. Analytical model:characteristics of nanosecond pulsed plasma synthetic jet actuator in multiple-pulsed mode[J].Advances in Applied Mathematics and Mechanics, 2017, 9(2):439-462. [140] DONG H, GENG X, SHI Z W, et al. On evolution of flow structures induced by nanosecond pulse discharge inside a plasma synthetic jet actuator[J].Japanese Journal of Applied Physics, 2019, 58(2):028002. [141] HUANG H X, TAN H J, SUN S, et al. Letter:Transient interaction between plasma jet and supersonic compression ramp flow[J].Physics of Fluids, 2018, 30(4):041703. [142] LIU R B, NIU Z G, WANG M M, et al. Aerodynamic control of NACA 0021 airfoil model with spark discharge plasma synthetic jets[J].Science China Technological Sciences, 2015, 58(11):1949-1955. [143] 刘汝兵, 王萌萌, 郝明, 等. 补气式等离子体射流发生器实验研究[J].航空学报, 2016, 37(6):1713-1721. LIU R B, WANG M M, HAO M, et al. Experimental research on air supplementing type plasma synthetic jet generator[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1713-1721(in Chinese). [144] LIU R B, LIAN G C, DUAN X W, et al. A comparative study on different methods of measuring dynamic characteristics of the plasma synthetic jet[C]//20192nd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM). Piscataway:IEEE, 2019:401-411. [145] YANG G, YAO Y F, FANG J, et al. Large-eddy simulation of shock-wave/turbulent boundary layer interaction with and without SparkJet control[J].Chinese Journal of Aeronautics, 2016, 29(3):617-629. [146] 王磊. 等离子体合成射流并联放电及脉冲功率源研制[M]. 北京:中国科学院大学, 2016. WANG L. Study of Pulsed Power Supply for Plasma Synthetic Jet Parallel Discharge[M]. Beijing:University of Chinese Academy of Sciences, 2016(in Chinese). [147] 王磊, 章程, 罗振兵, 等. 面向等离子体合成射流应用的微秒脉冲源研制[J].强激光与粒子束, 2016, 28(4):139-145. WANG L, ZHANG C, LUO Z B, et al. Compact microsecond-pulse generator for plasma synthetic jet[J].High Power Laser and Particle Beams, 2016, 28(4):139-145(in Chinese). [148] 韩磊, 章程, 罗振兵, 等. 面向等离子体高能合成射流应用的重频脉冲源研制[J].高电压技术, 2017, 43(9):3093-3099. HAN L, ZHANG C, LUO Z B, et al. Repetitive pulsed generator for high-energy plasma synthetic jet[J].High Voltage Engineering, 2017, 43(9):3093-3099(in Chinese). [149] ZHANG C, HAN L, QIU J T, et al. A pulsed generator for synchronous discharges of high-energy plasma synthetic jet actuators[J].IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(4):2076-2084. [150] CHENG X, HUANG B D, ZHANG C, et al. A nanosecond pulsed generator with fast-solid-state switch for synchronous discharge in plasma synthetic jet actuators[J].IEEE Transactions on Plasma Science, 2019, 47(5):1901-1908. [151] LI J F, ZHANG X B. Active flow control for supersonic aircraft:a novel hybrid synthetic jet actuator[J].Sensors and Actuators A:Physical, 2020, 302:111770. [152] SHIN J. Characteristics of high speed electro-thermal jet activated by pulsed DC discharge[J].Chinese Journal of Aeronautics, 2010, 23(5):518-522. [153] DONG B J, HONG D P, BAUCHIRE J M, et al. Experimental study of a gas jet generated by an atmospheric microcavity discharge[J].IEEE Transactions on Plasma Science, 2012, 40(11):2817-2821. [154] SINGH B, BELMOUSS M, BANE S P. Characterization of flow control actuators based on spark discharge plasmas using particle image velocimetry[C]//46th AIAA Plasmadynamics and Lasers Conference. Reston:AIAA, 2015. [155] RUSSELL A, ZARE-BEHTASH H, KONTIS K. Joule heating flow control methods for high-speed flows[J].Journal of Electrostatics, 2016, 80:34-68. [156] NATARAJAN V, PADMANABHAN S, KUMAR V S, et al. Conceptual studies on thrust vector control using cascaded arc plasma jet[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston:AIAA, 2017. [157] CHIATTO M, PALUMBO A, DE LUCA L. A calibrated lumped element model for the prediction of PSJ actuator efficiency performance[J].Actuators, 2018, 7(1):10. [158] KIM H J, CHAE J, AHN S, et al. Numerical analysis on jet formation process of sparkjet actuator[C]//2018 AIAA Aerospace Sciences Meeting. Reston:AIAA, 2018. [159] SEYHAN M, AKANSU Y E, KARAKAYA F, et al. Effect of the duty cycle on the spark-plug plasma synthetic jet actuator[J].EPJ Web of Conferences, 2016, 114:02104. [160] SEYHAN M, AKANSU Y E. The effect of a novel spark-plug plasma synthetic jet actuator on the performance of a PEM fuel cell[J].International Journal of Heat and Mass Transfer, 2019, 140:147-151. |
[1] | 谢玮, 罗振兵, 周岩, 刘强, 吴建军, 董昊. 高超声速双楔激波干扰定常射流控制试验研究[J]. 航空学报, 2024, 45(7): 128813-128813. |
[2] | 程盼, 景向嵘, 罗振兵, 高天翔, 周岩, 邓雄, 孙乾. 等离子体合成射流激励器阵列破除翼前缘三维冰特性[J]. 航空学报, 2024, 45(12): 129137-129137. |
[3] | 刘汝兵, 陈泽帆, 林瑞鑫, 林麒. 等离子体合成射流主动控制平面叶栅叶片流致振动[J]. 航空学报, 2023, 44(20): 128430-128430. |
[4] | 张刘, 黄勇, 陈辅政, 朱正龙, 郭天豪, 姜裕标, 周铸. 基于环量控制的无尾飞翼俯仰和滚转两轴无舵面姿态控制飞行试验[J]. 航空学报, 2023, 44(18): 128224-128224. |
[5] | 罗振兵, 谢玮, 解旭祯, 周岩, 刘强. 激波及其干扰主动流动控制研究进展[J]. 航空学报, 2023, 44(15): 529002-529002. |
[6] | 邵帅, 郭正, 贾高伟, 陈清阳, 侯中喜, 张来平. 中等展弦比飞翼布局无人机后缘射流滚转控制[J]. 航空学报, 2023, 44(10): 127437-127437. |
[7] | 张旭东, 李铮, 董昊, 高思源, 纪祖赑, 黎凯昕, 白光辉. 高超声速流场等离子体逆向喷流减阻特性[J]. 航空学报, 2022, 43(S2): 115-123. |
[8] | 景向嵘, 程盼, 罗振兵, 高天翔, 周岩, 邓雄. 电弧放电激励器破除冰特性及裂纹扩展规律[J]. 航空学报, 2022, 43(S2): 204-213. |
[9] | 李铮, 徐聪, 张健, 李萌萌, 马祎蕾, 白光辉. 等离子体合成射流激励器高速流场逆向喷流控制[J]. 航空学报, 2022, 43(S2): 225-232. |
[10] | 马正雪, 罗振兵, 赵爱红, 周岩, 谢玮, 刘强, 朱寅鑫, 彭文强. 高超声速流场等离子体合成射流逆向喷流特性[J]. 航空学报, 2022, 43(S2): 192-203. |
[11] | 韩路阳, 王斌, 蒲亮, 陈青, 郑海滨. 能量沉积减阻技术机理及相关问题研究进展[J]. 航空学报, 2022, 43(9): 26032-026032. |
[12] | 刘汝兵, 韦文韬, 李飞, 林麒. 补气式等离子体合成射流激励器工作机制[J]. 航空学报, 2022, 43(8): 125854-125854. |
[13] | 章胜华, 邓枫, 覃宁, 刘学强. 激波控制鼓包对跨声速抖振影响的数值研究[J]. 航空学报, 2022, 43(11): 526806-526806. |
[14] | 冯立好, 魏凌云, 董磊, 王晋军. 飞翼布局飞机耦合运动失稳的主动流动控制[J]. 航空学报, 2022, 43(10): 527353-527353. |
[15] | 陈旭亮, 张琛, 季宏丽, 裘进浩. SMA鼓包迟滞建模与控制策略[J]. 航空学报, 2021, 42(9): 224652-224652. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学