[1] 张剑桥, 叶东, 孙兆伟. SE(3)上姿轨耦合航天器高精度快速终端滑模控制[J]. 宇航学报, 2017, 38(2):176-184. ZHANG J Q, YE D, SUN Z W. High-accuracy fast terminal sliding mode control for coupled spacecraft on SE(3)[J]. Journal of Astronautics, 2017, 38(2):176-184(in Chinese). [2] 王辉, 胡庆雷, 石忠, 等. 基于反步法的航天器有限时间姿态跟踪容错控制[J]. 航空学报, 2015, 36(6):1933-1939. WANG H, HU Q L, SHI Z, et al. Backstepping-based finite-time fault-tolerant attitude tracking control for spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1933-1939(in Chinese). [3] 胡庆雷, 姜博严, 石忠. 基于新型终端滑模的航天器执行器故障容错姿态控制[J]. 航空学报, 2014, 35(1):249-258. HU Q L, JIANG B Y, SHI Z. Novel terminal sliding mode based fault tolerant attitude control for spacecraft under actuator faults[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):249-258(in Chinese). [4] 马广富, 朱庆华, 王鹏宇, 等. 基于终端滑模的航天器自适应预设性能姿态跟踪控制[J]. 航空学报, 2018, 39(6):321763. MA G F, ZHU Q H, WANG P Y, et al. Adaptive prescribed performance attitude tracking control for spacecraft via terminal sliding-mode technique[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):321763(in Chinese). [5] 董宏洋. 基于对偶四元数的航天器位姿一体化控制方法研究[D]. 哈尔滨:哈尔滨工业大学, 2017:12-13. DONG H Y. Spacecraft integrated attitude-position control using dual quaternions[D]. Harbin:Harbin Institute of Technology, 2017:12-13(in Chinese). [6] 朱战霞, 史格非, 樊瑞山. 航天器相对运动姿轨耦合动力学建模方法[J]. 飞行力学, 2018, 36(1):1-6. ZHU Z X, SHI G F, FAN R S. Dynamic modeling methods of attitude and orbital coupling for spacecraft relative motion[J]. Flight Dynamics, 2018, 36(1):1-6(in Chinese). [7] STRAMIGIOLI S. Geometric control of mechanical systems:Modelling, analysis, and design for simple mechanical control systems[J]. International Journal of Robust and Nonlinear Control, 2006, 16(11):547-548. [8] ZHANG J Q, YE D, SUN Z W, et al. Extended state observer based robust adaptive control on SE(3) for coupled spacecraft tracking maneuver with actuator saturation and misalignment[J]. Acta Astronautica, 2018, 143:221-233. [9] HESTENES D, LI H B, ROCKWOOD A. New algebraic tools for classical geometry[M]//SOMMER G. Geometric Computing with Clifford Algebras. Berlin:Springer, 2001:3-26. [10] ACKERMANN J. Parameter space design of robust control systems[J]. IEEE Transactions on Automatic Control, 1980, 25(6):1058-1072. [11] 刘聪, 钱坤, 李颖晖, 等. 一体化执行器饱和线性矩阵不等式跟踪容错控制器设计[J]. 控制理论与应用, 2019, 36(1):79-86. LIU C, QIAN K, LI Y H, et al. The integrated tracking fault tolerant controller design under actuator saturation with linear matrix inequality algorithm[J]. Control Theory & Applications, 2019, 36(1):79-86(in Chinese). [12] ZHAO D, YANG H, JIANG B, et al. Attitude stabilization of a flexible spacecraft under actuator complete failure[J]. Acta Astronautica, 2016, 123:129-136. [13] 董宏洋. 基于对偶四元数的航天器位姿一体化控制方法研究[D]. 哈尔滨:哈尔滨工业大学, 2017:90-105. DONG H Y. Spacecraft integrated attitude-position control using dual quaternions[D]. Harbin:Harbin Institute of Technology, 2017:90-105(in Chinese). [14] Brodsky V, Shoham M. Dual numbers representation of rigid body dynamics[J]. Mechanism & Machine Theory, 1999, 34(5):693-718. [15] GONG K J, LIAO Y, WANG Y. Adaptive fixed-time terminal sliding mode control on SE(3) for coupled spacecraft tracking maneuver[J]. International Journal of Aerospace Engineering, 2020, 2020:1-15. [16] LEE D, BUTCHER E A, SANYAL A K. Sliding mode control for decentralized spacecraft formation flying using geometric mechanics[J]. Advances in the Astronautical Sciences, 2014, 150:3149-3168. [17] LEE D, VUKOVICH G. Adaptive sliding mode control for spacecraft body-fixed hovering in the proximity of an asteroid[J]. Aerospace Science and Technology, 2015, 46:471-483. [18] JIANG L, WANG Y, XU S J. Integrated 6-DOF orbit-attitude dynamical modeling and control using geometric mechanics[J]. International Journal of Aerospace Engineering, 2017, 2017:4034328. [19] LU K F, XIA Y Q. Adaptive attitude tracking control for rigid spacecraft with finite-time convergence[J]. Automatica, 2013, 49(12):3591-3599. [20] SHI X N, ZHANG Y A, ZHOU D, et al. Global fixed-time attitude tracking control for the rigid spacecraft with actuator saturation and faults[J]. Acta Astronautica, 2019, 155:325-333. [21] SHI X N, ZHOU Z G, ZHOU D. Adaptive fault-tolerant attitude tracking control of rigid spacecraft on lie group with fixed-time convergence[J]. Asian Journal of Control, 2020, 22(1):423-435. [22] 沈启坤. 基于自适应控制技术的故障诊断与容错控制研究[D]. 南京:南京航空航天大学, 2015:9-11. SHEN Q K. Study of fault diagnosis and fault tolerant control based on adaptive control technique[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015:9-11(in Chinese). |