[1] XIU D B, KARNIADAKIS G E. Modeling uncertainty in flow simulations via generalized polynomial chaos[J]. Journal of Computational Physics, 2003, 187(1): 137-167. [2] HICKS R M, CLIFF S E. An evaluation of three two-dimensional computational fluid dynamics codes including low Reynolds numbers and transonic Mach numbers:NASA TM-102840[R]. Washington,D.C.: NASA, 1991. [3] FUJINO M, YOSHIZAKI Y, KAWAMURA Y. Natural-laminar-flow airfoil development for a lightweight business jet[J]. Journal of Aircraft, 2003, 40(4): 609-615. [4] GREEN B E, WHITESIDES J L, CAMPBELL R L, et al. Method for the constrained design of natural laminar flow airfoils[J]. Journal of Aircraft, 1997, 34(6): 706-712. [5] 黄江涛, 高正红, 白俊强, 等. 应用Delaunay图映射与FFD技术的层流翼型气动优化设计[J]. 航空学报, 2012, 33(10): 1817-1826. HUANG J T, GAO Z H, BAI J Q, et al. Laminar airfoil aerodynamic optimization design based on Delaunay graph mapping and FFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1817-1826(in Chinese). [6] SELIG M S, GUGLIELMO J J. High-lift low Reynolds number airfoil design[J]. Journal of Aircraft, 1997, 34(1): 72-79. [7] ZHAO K, GAO Z H, HUANG J T. Robust design of natural laminar flow supercritical airfoil by multi-objective evolution method[J]. Applied Mathematics and Mechanics, 2014, 35(2): 191-202. [8] ZHU J, GAO Z H, ZHAN H, et al. A high-speed nature laminar flow airfoil and its experimental study in wind tunnel with nonintrusive measurement technique[J]. Chinese Journal of Aeronautics, 2009, 22(3): 225-229. [9] LI J, GAO Z H, HUANG J T, et al. Robust design of NLF airfoils[J]. Chinese Journal of Aeronautics, 2013, 26(2): 309-318. [10] LIEBECK R H. Design of subsonic airfoils for high lift[J]. Journal of Aircraft, 1978, 15(9): 547-561. [11] ZHAO H, GAO Z H. Uncertainty-based design optimization of NLF airfoil for high altitude long endurance unmanned air vehicles[J]. Engineering Computations, 2019, 36(3): 971-996. [12] NAJM H N. Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics[J]. Annual Review of Fluid Mechanics, 2009, 41(1): 35-52. [13] ZANG T A, HEMSCH M J, HILBURGER M W, et al. Needs and opportunities for uncertainty-based multidisciplinary design methods for aerospace vehicles:NASA/TM-2002-211462[R]. Washington, D.C.: NASA Langley Research Center, 2002. [14] KEANE A J. Comparison of several optimization strategies for robust turbine blade design[J]. Journal of Propulsion and Power, 2009, 25(5): 1092-1099. [15] KEANE A J. Cokriging for robust design optimization[J]. AIAA Journal, 2012, 50(11): 2351-2364. [16] HOSDER S, WALTERS R, PEREZ R. A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006. [17] SHAH H, HOSDER S, WINTER T. Quantification of margins and mixed uncertainties using evidence theory and stochastic expansions[J]. Reliability Engineering & System Safety, 2015, 138: 59-72. [18] PADRON A S, ALONSO J J, ELDRED M S. Multi-fidelity methods in aerodynamic robust optimization[C]//18th AIAA Non-Deterministic Approaches Conference. Reston: AIAA, 2016. [19] KIM N H, WANG H Y, QUEIPO N V. Efficient shape optimization under uncertainty using polynomial chaos expansions and local sensitivities[J]. AIAA Journal, 2006, 44(5): 1112-1116. [20] SHIMOYAMA K, LIM J N, JEONG S, et al. Practical implementation of robust design assisted by response surface approximation and visual data-mining[J]. Journal of Mechanical Design, 2009, 131(6): 061007. [21] DODSON M, PARKS G T. Robust aerodynamic design optimization using polynomial chaos[J]. Journal of Aircraft, 2009, 46(2): 635-646. [22] ZHAO H, GAO Z H, XU F, et al. Review of robust aerodynamic design optimization for air vehicles[J]. Archives of Computational Methods in Engineering, 2019, 26(3): 685-732. [23] ZHAO H, GAO Z H, GAO Y, et al. Effective robust design of high lift NLF airfoil under multi-parameter uncertainty[J]. Aerospace Science and Technology, 2017, 68: 530-542. [24] HUANG J T, GAO Z H, ZHAO K, et al. Robust design of supercritical wing aerodynamic optimization considering fuselage interfering[J]. Chinese Journal of Aeronautics, 2010, 23(5): 523-528. [25] PAIVA R M, CRAWFORD C, SULEMAN A. Robust and reliability-based design optimization framework for wing design[J]. AIAA Journal, 2014, 52(4): 711-724. [26] LEE S H, CHEN W. A comparative study of uncertainty propagation methods for black-box-type problems[J]. Structural and Multidisciplinary Optimization, 2008, 37(3): 239-253. [27] JANSSEN H. Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence[J]. Reliability Engineering & System Safety, 2013, 109: 123-132. [28] LEE S H, CHEN W, KWAK B M. Robust design with arbitrary distributions using Gauss-type quadrature formula[J]. Structural and Multidisciplinary Optimization, 2009, 39(3): 227-243. [29] RAUHUT H, WARD R. Sparse Legendre expansions via l1-minimization[J]. Journal of Approximation Theory, 2012, 164(5): 517-533. [30] BLATMAN G, SUDRET B. Adaptive sparse polynomial chaos expansion based on least angle regression[J]. Journal of Computational Physics, 2011, 230(6): 2345-2367. [31] ZHAO H, GAO Z H, XU F, et al. An efficient adaptive forward-backward selection method for sparse polynomial chaos expansion[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 355: 456-491. [32] 黄江涛, 刘刚, 高正红, 等. 飞行器多学科耦合伴随体系的现状与发展趋势[J]. 航空学报, 2020, 41(5): 623404. HUANG J T, LIU G, GAO Z H, et al. Current situation and development trend of multidisciplinary coupled adjoint system for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623404(in Chinese). [33] YAO W, CHEN X, LUO W, et al. Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles[J]. Progress in Aerospace Sciences, 2011, 47(6): 450-479. [34] SCHUE··LLER G I, JENSEN H A. Computational methods in optimization considering uncertainties-An overview [J]. Computer Methods in Applied Mechanics & Engineering, 2008, 198(1): 2-13. [35] COOK L W, JARRETT J P. Robust airfoil optimization and the importance of appropriately representing uncertainty[J]. AIAA Journal, 2017, 55(11): 3925-3939. [36] ZHAO H, GAO Z, XU F, et al. Adaptive multi-fidelity sparse polynomial chaos-Kriging metamodeling for global approximation of aerodynamic data[J]. Structural and Multidisciplinary Optimization, 2021, 64(2): 829-858. [37] CHATTERJEE T, CHAKRABORTY S, CHOWDHURY R. A critical review of surrogate assisted robust design optimization[J]. Archives of Computational Methods in Engineering, 2019, 26(1): 245-274. [38] BERAN P, STANFORD B. Uncertainty quantification in aeroelasticity[J]. Annual Review of Fluid Mechanics, 2017, 49(1): 361-386. [39] 赵轲, 高正红, 黄江涛, 等. 基于混沌多项式方法的翼型流场不确定性分析及稳健设计研究[J]. 力学学报, 2014, 46(1): 10-19. ZHAO K, GAO Z H, HUANG J T, et al. Uncertainty quantification and robust design of airfoil based polynomial chaos technique[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 10-19(in Chinese). [40] CAMERON R H, MARTIN W T. The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals[J]. Annals of Mathematics, 1947, 48(2): 385-392. [41] CANDES E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9-10): 589-592. [42] 赵欢, 高正红, 王超, 等适用于高速层流翼型的计算网格研究[J]. 应用力学学报, 2018, 35(2): 351-357. ZHAO H, GAO Z H, WANG C, et al. Research on the computing grid of high speed laminar airfoil[J]. Chinese Journal of Applied Mechanics, 2018, 35(2): 351-357(in Chinese). [43] SHI Y, MADER C A, HE S, et al. Natural laminar-flow airfoil optimization design using a discrete adjoint approach[J]. AIAA Journal, 2020, 58(11): 4702-4722. [44] 赵欢. 基于代理模型的高效气动优化与气动稳健设计方法研究[D].西安: 西北工业大学, 2020. ZHAO H. Research on surrogate-based efficient aerodynamic optimization and robust aerodynamic design methods[D]. Xi'an: Northwestern Polytechnical University, 2020(in Chinese). |