[1] 王嘉轶, 闻新. 航天器故障诊断技术的研究现状与进展[J]. 航空兵器, 2016, 23(5):71-76. WANG J Y, WEN X. Research status and progress of fault diagnosis technology for spacecraft[J]. Aero Weaponry, 2016, 23(5):71-76(in Chinese). [2] 周军, 刘莹莹. 航天器姿态与轨道控制原理[M]. 西安:西北工业大学出版社, 2016. ZHOU J, LIU Y Y.Spacecraft attitude and orbit control principle[M]. Xi'an:Northwestern Polytechnical University Press, 2016(in Chinese). [3] 李立涛, 荣思远. 航天器姿态动力学与控制[M]. 哈尔滨:哈尔滨工业大学出版社, 2019. LI L T, RONG S Y. Attitude dynamics and control of spacecraft[M]. Harbin:Harbin Institute of Technology Press, 2019(in Chinese). [4] 张华, 沈嵘康, 宗益燕, 等. 遥感卫星在轨故障统计与分析[J]. 航天器环境工程, 2015, 32(3):324-329. ZHANG H, SHEN R K, ZONG Y Y, et al. On-orbit fault statistical analysis for remote sensing satellite[J]. Spacecraft Environment Engineering, 2015, 32(3):324-329(in Chinese). [5] 张爱华, 霍星. 航天器执行机构姿态容错控制[M]. 北京:科学出版社, 2015. ZHANG A H, HUO X. Actuator attitute fault tolerant control for spacecraft Actuator attitude fault tolerant control for spacecraft[M]. Beijing:Science Press, 2015(in Chinese). [6] 邢琰, 吴宏鑫, 王晓磊, 等. 航天器故障诊断与容错控制技术综述[J]. 宇航学报, 2003, 24(3):221-226. XING Y, WU H X, WANG X L, et al. Survey of fault diagnosis and fault-tolerance control technology for spacecraft[J]. Journal of Astronautics, 2003, 24(3):221-226(in Chinese). [7] YIN S, XIAO B, DING S X, et al. A review on recent development of spacecraft attitude fault tolerant control system[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5):3311-3320. [8] MARTELLA P, TRAMUTOLA A, MONTAGNA M. Fine gyroless attitude control:The sax experience[J]. IFAC Proceedings Volumes, 2001, 34(15):37-46. [9] MACALA G A, LEE A Y, WANG E K. Feasibility studyof two cassini reaction wheel/thruster hybrid controllers[J]. Journal of Spacecraft and Rockets, 2014, 51(2):574-585. [10] KRUK J W, CLASS B F, ROVNER D, et al. FUSE in-orbit attitude control with two reaction wheels and no gyroscopes[C]//Future EUV/UV and Visible Space Astrophysics Missions and Instrumentation,2003, 4854:274-285. [11] SWEETING M N, HASHIDA Y, BEAN N P, et al. CERISE microsatellite recovery from first detected collision in low Earth orbit[J]. Acta Astronautica, 2004, 55(2):139-147. [12] DE RUITER A. A fault-tolerant magnetic spin stabilizing controller for the JC2Sat-FF mission[J]. Acta Astronautica, 2011, 68(1-2):160-171. [13] 王敏, 解永春. 考虑推力器推力上界及故障情况的航天器实时指令分配最优查表法[J]. 宇航学报, 2010, 31(6):1540-1546. WANG M, XIE Y C. Spacecraft thrusters real time command allocation algorithm in consideration of thrust upper bounds and thruster failures[J]. Journal of Astronautics, 2010, 31(6):1540-1546(in Chinese). [14] 王淑一, 刘新彦, 张笃周. 环境减灾-1A、1B卫星控制系统方案及在轨验证[J]. 航天器工程, 2009, 18(6):68-75. WANG S Y, LIU X Y, ZHANG D Z. Control system overview and on-orbit test of HJ-1A/1B satellites[J]. Spacecraft Engineering, 2009, 18(6):68-75(in Chinese). [15] 张钰, 郁发新, 郑阳明, 等. 皮卫星星务管理系统容错设计[J]. 宇航学报, 2007, 28(6):1753-1757. ZHANG Y, YU F X, ZHENG Y M, et al. Fault tolerance design of pico-satellite's house keeping system[J]. Journal of Astronautics, 2007, 28(6):1753-1757(in Chinese). [16] FREI C W, KRAUS F J, BLANKE M. Recoverability viewed as a system property[C]//1999 European Control Conference (ECC).Piscataway:IEEE Press, 1999:2197-2202. [17] 王大轶, 屠园园, 刘成瑞, 等. 航天器控制系统可重构性的内涵与研究综述[J]. 自动化学报, 2017, 43(10):1687-1702. WANG D Y, TU Y Y, LIU C R, et al. Connotation and research of reconfigurability for spacecraft control systems:a review[J]. Acta Automatica Sinica, 2017, 43(10):1687-1702(in Chinese). [18] MVLLER P C, WEBER H I. Analysis and optimization of certain qualities of controllability and observability for linear dynamical systems[J]. Automatica, 1972, 8(3):237-246. [19] WU N E, ZHOU K M, SALOMON G. Control reconfigurability of linear time-invariant systems[J]. Automatica, 2000, 36(11):1767-1771. [20] PENG Y, YANG H, JIANG B. Probabilistic fault recoverability analysis of flight control process[J]. Chinese Journal of Aeronautics, 2021, 34(2):529-538. [21] YANG H, MENG Q K, JIANG B. Controllability of spacecraft attitude and its application in reconfigurability analysis[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2019,36(2):189-196. [22] DONG H Y, HU Q L, AKELLA M R. Safety control for spacecraft autonomous rendezvous and docking under motion constraints[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(7):1680-1692. [23] 徐赫屿, 王大轶, 李文博. 卫星姿态控制系统的可重构性量化评价方法研究[J]. 航天控制, 2016, 34(4):29-35. XU H Y, WANG D Y, LI W B. A reconfigurability evaluation method for satellite control system based on gramian matrix[J]. Aerospace Control, 2016, 34(4):29-35(in Chinese). [24] LOUREIRO R, MERZOUKI R, BOUAMAMA B O. Bond graph model based on structural diagnosability and recoverability analysis:application to intelligent autonomous vehicles[J]. IEEE Transactions on Vehicular Technology, 2012, 61(3):986-997. [25] TABATABAEIPOUR S M, GHOLAMI M, BAK T. Configuration selection for reconfigurable control of piecewise affine systems[J]. International Journal of Control, 2015, 88(6):1310-1323. [26] WANG D Y, DUAN W J, LIU C R. An analysis method for control reconfigurability of linear systems[J]. Advances in Space Research, 2016, 57(1):329-339. [27] 赵琳, 闫鑫, 郝勇, 等. 基于快速终端滑模的航天器自适应容错控制[J]. 宇航学报, 2012, 33(4):426-435. ZHAO L, YAN X, HAO Y, et al. Adaptive fault tolerant control for spacecraft based on fast terminal sliding mode[J]. Journal of Astronautics, 2012, 33(4):426-435(in Chinese). [28] MA Y J, JIANG B, TAO G. Adaptive actuator failure identification for microsatellites under closed-loop control[J]. IEEE Transactions on Control Systems Technology, 2015, 23(3):910-923. [29] HUO B Y, XIA Y Q, YIN L J, et al. Fuzzy adaptive fault-tolerant output feedback attitude-tracking control of rigid spacecraft[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(8):1898-1908. [30] SHEN Q, YUE C F, GOH C H, et al. Rigid-body attitude tracking control under actuator faults and angular velocity constraints[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(3):1338-1349. [31] MA Y J, JIANG B, TAO G, et al. Adaptive direct compensation control scheme for spacecraft with multiple actuator faults[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(4):923-930. [32] SUN L. Adaptive fault-tolerant constrained control of cooperative spacecraft rendezvous and docking[J]. IEEE Transactions on Industrial Electronics, 2020, 67(4):3107-3115. [33] ZHOU N, KAWANO Y, CAO M. Neural network-based adaptive control for spacecraft under actuator failures and input saturations[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9):3696-3710. [34] MA Y J, JIANG B, TAO G, et al. Uncertainty decomposition-based fault-tolerant adaptive control of flexible spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2):1053-1068. [35] ZHAO D, YANG H, JIANG B, et al. Attitude stabilization of a flexible spacecraft under actuator complete failure[J]. Acta Astronautica, 2016, 123:129-136. [36] LI Q, YANG H, ZHAO D, et al. Fault-tolerant control and vibration suppression of flexible spacecraft:an interconnected system approach[J]. Chinese Journal of Aeronautics, 2020, 33(7):2014-2023. [37] QIAN M S, SHI Y, GAO Z F, et al. Integrated fault tolerant tracking control for rigid spacecraft using fractional order sliding mode technique[J]. Journal of the Franklin Institute, 2020, 357(15):10557-10583. [38] GAO C Y, DUAN G R. Fault diagnosis and fault tolerant control for nonlinear satellite attitude control systems[J]. Aerospace Science and Technology, 2014, 33(1):9-15. [39] SHEN Q, WANG D W, ZHU S Q, et al. Finite-time fault-tolerant attitude stabilization for spacecraft with actuator saturation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3):2390-2405. [40] 王辉, 胡庆雷, 石忠, 等. 基于反步法的航天器有限时间姿态跟踪容错控制[J]. 航空学报, 2015, 36(6):1933-1939. WANG H, HU Q L, SHI Z, et al. Backstepping-based finite-time fault-tolerant attitude tracking control for spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1933-1939(in Chinese). [41] LI B, HU Q L, YU Y B, et al. Observer-based fault-tolerant attitude control for rigid spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5):2572-2582. [42] GUI H C, VUKOVICH G. Adaptive fault-tolerant spacecraft attitude control using a novel integral terminal sliding mode[J]. International Journal of Robust and Nonlinear Control, 2017, 27(16):3174-3196. [43] HU Q L, SHAO X D, CHEN W H. Robust fault-tolerant tracking control for spacecraft proximity operations using time-varying sliding mode[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1):2-17. [44] VAN M. An enhanced robust fault tolerant control based on an adaptive fuzzy PID-Nonsingular fast terminal sliding mode control for uncertain nonlinear systems[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(3):1362-1371. [45] JIANG B Y, HU Q L, FRISWELL M I. Fixed-time attitude control for rigid spacecraft with actuator saturation and faults[J]. IEEE Transactions on Control Systems Technology, 2016, 24(5):1892-1898. [46] GAO J W, FU Z M, ZHANG S. Adaptive fixed-time attitude tracking control for rigid spacecraft with actuator faults[J]. IEEE Transactions on Industrial Electronics, 2019, 66(9):7141-7149. [47] SHI X N, ZHANG Y A, ZHOU D, et al. Global fixed-time attitude tracking control for the rigid spacecraft with actuator saturation and faults[J]. Acta Astronautica, 2019, 155:325-333. [48] JIANG B Y, HU Q L, FRISWELL M I. Fixed-time rendezvous control of spacecraft with a tumbling target under loss of actuator effectiveness[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(4):1576-1586. [49] 肖冰, 胡庆雷, 霍星, 等. 执行器故障的挠性航天器姿态滑模容错控制[J]. 航空学报, 2011, 32(10):1869-1878. XIAO B, HU Q L, HUO X, et al. Sliding mode fault tolerant attitude control for flexible spacecraft under actuator fault[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1869-1878(in Chinese). [50] HU Q. Robust adaptive sliding-mode fault-tolerant control with L2-gain performance for flexible spacecraft using redundant reaction wheels[J]. IET Control Theory & Applications, 2010, 4(6):1055-1070. [51] XIAO B, HU Q L, ZHANG Y M. Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation[J]. IEEE Transactions on Control Systems Technology, 2012, 20(6):1605-1612. [52] HU Q L, SHAO X D, GUO L. Adaptive fault-tolerant attitude tracking control of spacecraft with prescribed performance[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1):331-341. [53] SHAO X D, HU Q L, SHI Y, et al. Fault-tolerant prescribed performance attitude tracking control for spacecraft under input saturation[J]. IEEE Transactions on Control Systems Technology, 2020, 28(2):574-582. [54] WANG C L, GUO L, WEN C Y, et al. Event-triggered adaptive attitude tracking control for spacecraft with unknown actuator faults[J]. IEEE Transactions on Industrial Electronics, 2020, 67(3):2241-2250. [55] HUANG X W, DUAN G R. Fault-tolerant attitude tracking control of combined spacecraft with reaction wheels under prescribed performance[J]. ISA Transactions, 2020, 98:161-172. [56] LI B, HU Q L, YANG Y S, et al. Finite-time disturbance observer based integral sliding mode control for attitude stabilisation under actuator failure[J]. IET Control Theory & Applications, 2019, 13(1):50-58. [57] AMRR S M, NABI M. Finite-time fault tolerant attitude tracking control of spacecraft using robust nonlinear disturbance observer with anti-unwinding approach[J]. Advances in Space Research, 2020, 66(7):1659-1671. [58] GUO B, CHEN Y. Adaptive fast sliding mode fault tolerant control integrated with disturbance observer for spacecraft attitude stabilization system[J]. ISA Transactions, 2019, 94:1-9. [59] GAO Z F, ZHOU Z P, QIAN M S, et al. Active fault tolerant control scheme for satellite attitude system subject to actuator time-varying faults[J]. IET Control Theory & Applications, 2018, 12(3):405-412. [60] LI B, HU Q L, MA G F, et al. Fault-tolerant attitude stabilization incorporating closed-loop control allocation under actuator failure[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(4):1989-2000. [61] SHEN Q, YUE C F, GOH C H, et al. Active fault-tolerant control system design for spacecraft attitude maneuvers with actuator saturation and faults[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5):3763-3772. [62] ZHANG X B, ZHOU Z P. Integrated fault estimation and fault tolerant attitude control for rigid spacecraft with multiple actuator faults and saturation[J]. IET Control Theory & Applications, 2019, 13(15):2365-2375. [63] HU H, LIU L, WANG Y J, et al. Active fault-tolerant attitude tracking control with adaptive gain for spacecrafts[J]. Aerospace Science and Technology, 2020, 98:105706. [64] REN W. Formation keeping and attitude alignment for multiple spacecraft through local interactions[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2):633-638. [65] DU H B, LI S H, QIAN C J. Finite-time attitude tracking control of spacecraft with application to attitude synchronization[J]. IEEE Transactions on Automatic Control, 2011, 56(11):2711-2717. [66] DU H B, LI S H. Finite-time cooperative attitude control of multiple spacecraft using terminal sliding mode control technique[J]. International Journal of Modelling, Identification and Control, 2012, 16(4):327. [67] YANG H, JIANG B, COCQUEMPOT V. Decentralized fault tolerant formation control for a class of tethered spacecraft[J]. IFAC-PapersOnLine, 2015, 48(21):1128-1133. [68] ZOU A M, KUMAR K D. Robust attitude coordination control for spacecraft formation flying under actuator failures[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(4):1247-1255. [69] ZHANG C X, WANG J H, ZHANG D X, et al. Fault-tolerant adaptive finite-time attitude synchronization and tracking control for multi-spacecraft formation[J]. Aerospace Science and Technology, 2018, 73:197-209. [70] CHEN T, SHAN J J. Distributed adaptive fault-tolerantattitude tracking of multiple flexible spacecraft on SO(3)[J]. Nonlinear Dynamics, 2019, 95(3):1827-1839. [71] SMITH R S, HADAEGH F Y. Control of deep-space formation-flying spacecraft; relative sensing and switched information[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(1):106-114. [72] LI J Q, KUMAR K D. Decentralized fault-tolerant control for satellite attitude synchronization[J]. IEEE Transactions on Fuzzy Systems, 2012, 20(3):572-586. [73] YANG H, JIANG B, COCQUEMPOT V, et al. Spacecraft formation stabilization and fault tolerance:A state-varying switched system approach[J]. Systems & Control Letters, 2013, 62(9):715-722. |