[1] 路达, 刘金国, 高海波. 星球表面着陆巡视一体化探测机器人研究进展[J]. 航空学报, 2021, 42(1):523742. LU D, LIU J G, GAO H B. Progress research on integrated exploration robots for planet surface landing and moving[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1):523742(in Chinese). [2] 丁希仑, 徐坤. 星球探测机器人[J]. 航空制造技术, 2013(18):34-39. DING X L, XU K. Robot for planetary exploration[J]. Aeronautical Manufacturing Technology, 2013(18):34-39(in Chinese). [3] BROOKS R. A robot that walks:Emergent behaviors from a carefully evolved network[J]. Neural Computation, 1989, 1(2):253-262. [4] FERRELL C L. Many sensors, one robot[C]//Proceedings of the IEEE/RSJ International Conference (IROS'93). Piscataway:IEEE Press, 1993:399-406. [5] CYNTHIA F. Robust and adaptive locomotion of an autonomous hexapod[C]//Proceedings of From Perception to Action Conference. Piscataway:IEEE Press, 1994:66-77. [6] MANKINS J C. Modular architecture options for lunar exploration and development[J]. Space Technology, 2002, 1(4):53-64. [7] BRETT K, HRAND A, YANG C, et al. Lemur:Legged excursion mechanical utility rover[J]. Autonomous Robots, 2001, 11(3):201-205. [8] JAMES P S, NATHAN J B, BRETT K. Maximizing walking step length for a near omni-directional hexapod robot[C]//The 2004 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Westgate Building:Citeseer, 2004:332-335. [9] BARES J, HEBERT M. Ambler:An autonomous rover for planetary exploration[J]. IEEE Computer, 1998, 22(6):18-26. [10] LIU J J, REN X, YAN W, et al. Descent trajectory reconstruction and landing site positioning of Chang'E-4 on the lunar farside[J]. Nature Communications, 2019, 10(1):1-10. [11] RICHARD A, NED M, HALDUN K, et al. RHex:A biologically inspired hexapod runner[J]. Autonomous Robots, 2001, 11(3):207-213. [12] KRIS H, TIMOTHY B, JEAN-CLAUDE L, et al. Motion planning for a six-legged lunar robot[M]//Algorithmic Foundation of Robotics VⅡ. Berlin:Springer, 2008:301-316. [13] WANG Z, DING X, ROVETTA A, et al. Mobility analysis of the typical gait of a radial symmetrical six-legged robot[J]. Mechatronics, 2011, 21(7):1133-1146. [14] 张志贤, 梁鲁, 果琳丽, 等. 轮腿式可移动载人月面着陆器概念设想[J]. 载人航天, 2016, 22(2):202-209. ZHANG Z X, LIANG L, GUO L L, et al. Conceptual design of manned lunar lander with wheel-legged mobile system[J]. Manned Spaceflight, 2016, 22(2):202-209(in Chinese). [15] ANTOL J, CALHOUN P, FLICK J, et al. Low cost mars surface exploration:The mars tumbleweed:NASA/TM-2003-212411[R]. Washington, D.C.:NASA, 2003. [16] CALHOUN P, HARRIS P, RAISZADEH B, et al. Conceptual design and dynamics testing and modeling of a mars tumbleweed rover[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005:247. [17] SHAH M. Dynamic and aerodynamic modeling of the mars tumbleweed rover[D]. Raleigh:North Carolina State University, 2019:48-52. [18] XU K, DING X. Typical gait analysis of a six-legged robot in the context of metamorphic mechanism theory[J]. Chinese Journal of Mechanical Engneering, 2013, 26(4):147-159. [19] 岳富占, 崔平远, 崔祜涛. 月球车定位技术研究综述[J]. 深空探测研究, 2005, 3(2):17-22. YUE F Z, CUI P Y, CUI G T. Review of lunar rover positioning technology[J]. Deep Space Exploration, 2005, 3(2):17-22(in Chinese). [20] SELIG J M. Geometrical methods in robotics[M]//Monographs in Computer Science. New York:Springer, 1996:9-60. [21] PARK J. Interpolation and tracking of rigid body orientations[C]//IEEE International Conference on Control Automation and Systems. Piscataway:IEEE Press, 2010:668-673. |