[1] |
崔文斌, 陈煊, 陈超, 等. CFRP超高周疲劳损伤演化过程[J]. 航空学报, 2020, 41(1):223212. CUI W B, CHEN X, CHEN C, et al. Damage evolution process of CFRP in very high cycle fatigue[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):223212(in Chinese).
|
[2] |
李真, 王俊, 邓凡臣, 等. 复合材料机身壁板的强度分析与试验验证[J]. 航空学报, 2020, 41(9):223688. LI Z, WANG J, DENG F C, et al. Strength analysis and test verification of composite fuselage panels[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9):223688(in Chinese).
|
[3] |
SALVETTI M, GILIOLI A, SBARUFATTI C, et al. Analytical model of the dynamic behaviour of CFRP plates subjected to low-velocity impacts[J]. Composites Part B:Engineering, 2018, 142:47-55.
|
[4] |
TUO H L, LU Z X, MA X P, et al. Damage and failure mechanism of thin composite laminates under low-velocity impact and compression-after-impact loading conditions[J]. Composites Part B:Engineering, 2019, 163:642-654.
|
[5] |
LI L J, SUN L Y, WANG T K, et al. Repeated low-velocity impact response and damage mechanism of glass fiber aluminium laminates[J]. Aerospace Science and Technology, 2019, 84:995-1010.
|
[6] |
LI Y, ZHANG R M, LI L, et al. Temperature variation and damage characteristic of impacted CFRP laminate using infrared thermography:Experimental investigation[J]. International Journal of Fatigue, 2018, 112:130-137.
|
[7] |
MEOLA C, CARLOMAGNO G M. Infrared thermography of impact-driven thermal effects[J]. Applied Physics A, 2009, 96(3):759-762.
|
[8] |
RAVIKIRAN N K, VENKATARAMANAIAH A, BHAT M R, et al. Detection and evaluation of impact damage in CFRP laminates using ultrasound C-scan and IR thermography[C]//Proceedings of the National Seminar on Non-Destructive Evaluation. Hyderabad:[s.n.], 2006:1-5.
|
[9] |
TOUBAL L, KARAMA M, LORRAIN B. Damage evolution and infrared thermography in woven composite laminates under fatigue loading[J]. International Journal of Fatigue, 2006, 28(12):1867-1872.
|
[10] |
李斌, 童小燕, 姚磊江, 等. 基于红外和声发射的复合材料疲劳损伤实时监测[J]. 机械科学与技术, 2011, 30(2):191-194. LI B, TONG X Y, YAO L J, et al. Real-time monitoring of composite fatigue damage based on infrared thermography and acoustic emission[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(2):191-194(in Chinese).
|
[11] |
KARAMA M. Determination of the fatigue limit of a carbon/epoxy composite using thermographic analysis[J]. Structural Control and Health Monitoring, 2011, 18(7):781-789.
|
[12] |
MONTESANO J, FAWAZ Z, BOUGHERARA H. Use of infrared thermography to investigate the fatigue behavior of a carbon fiber reinforced polymer composite[J]. Composite Structures, 2013, 97:76-83.
|
[13] |
PEYRAC C, JOLLIVET T, LERAY N, et al. Self-heating method for fatigue limit determination on thermoplastic composites[J]. Procedia Engineering, 2015, 133:129-135.
|
[14] |
LUONG M P. Introducing infrared thermography in soil dynamics[J]. Infrared Physics & Technology, 2007, 49(3):306-311.
|
[15] |
GARNIER C, LORRAIN B, PASTOR M L. Impact damage evolution under fatigue loading by infrared thermography on composite structures[J]. EPJ Web of Conferences, 2010, 6:42020.
|
[16] |
ŞAHIN Ö S, SELEK M. Detection of delaminations of laminar composites by infrared thermography[J]. Celal Bayar Vniversitesi Fen Bilimleri Dergisi, 2016, 12(2):91945.
|
[17] |
SWAMY J N, LAHUERTA F, ANISIMOV A G, et al. Evaluating delamination growth in composites under dynamic loading using infrared thermography[C]//Proceedings of the 17th European Conference on Composite Materials. Munich:KIT, 2016:1-9.
|
[18] |
HUANG J, PASTOR M L, GARNIER C, et al. A new model for fatigue life prediction based on infrared thermography and degradation process for CFRP composite laminates[J]. International Journal of Fatigue, 2019, 120:87-95.
|
[19] |
VASSILOPOULOS A P. The history of fiber-reinforced polymer composite laminate fatigue[J]. International Journal of Fatigue, 2020, 134:105512.
|
[20] |
MENEGHETTI G, RICOTTA M. The use of the specific heat loss to analyse the low- and high-cycle fatigue behaviour of plain and notched specimens made of a stainless steel[J]. Engineering Fracture Mechanics, 2012, 81:2-16.
|
[21] |
GIANCANE S, CHRYSOCHOOS A, DATTOMA V, et al. Deformation and dissipated energies for high cycle fatigue of 2024-T3 aluminium alloy[J]. Theoretical and Applied Fracture Mechanics, 2009, 52:117-121.
|
[22] |
GUO Q, GUO X L, FAN J L, et al. Research on high-cycle fatigue behavior of FV502B steel based on intrinsic dissipation[J]. Acta Metallurgica Sinica, 2015, 51(4):400-406.
|
[23] |
SUEMASU H, SASAKI W, ISHIKAWA T, et al. A numerical study on compressive behavior of composite plates with multiple circular delaminations considering delamination propagation[J]. Composites Science and Technology, 2008, 68(12):2562-2567.
|
[24] |
LI Y, SONG Y J. A novel thermgoraphic methodology to predict damage evolution of impacted CFRP laminates under compression-compression fatigue based on inverted Weibull model[J/OL]. IEEE Sensors Journal, (2020-05-25)[2020-06-16]. https://ieeexplore.ieee.org/abstract/docment/909-9544.doi:10.1109/JSEN.2020.2997458.
|