[1] |
LEE J H S. The detonation phenomenon[M].Cambridge:Cambridge University Press,2008.
|
[2] |
WOLANSKI P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1):125-158.
|
[3] |
CHAN J, SISLIAN J P, ALEXANDER D. Numerically simulated comparative performance of a scramjet and shcramjet at Mach 11[J]. Journal of Propulsion and Power, 2010, 26(5):1125-1134.
|
[4] |
夏镇娟, 马虎, 卓长飞, 等. 圆盘结构下旋转爆震波的不稳定传播特性[J]. 航空学报, 2018, 39(2):121438. XIA Z J, MA H, ZHUO C F, et al. Characteristics of unstable propagation of rotating detonation wave in plane-radial structure[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):121438(in Chinese).
|
[5] |
沈洋, 刘凯欣, 陈璞, 等. 采用改进的CE/SE方法模拟方管中氢氧爆轰波的稳定传播结构[J]. 航空学报, 2019, 40(5):122591. SHEN Y, LIU K X, CHEN P, et al. Simulations of stable structure in oxy-hydrogen detonation propagation in square ducts using an improved CE/SE scheme[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):122591(in Chinese).
|
[6] |
徐灿, 马虎, 李健, 等. 旋转爆震发动机火焰与压力波传播特性[J]. 航空学报, 2017, 38(10):121226. XU C, MA H, LI J, et al. Propagation property of flame and pressure wave in rotating detonation engine[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):121226(in Chinese).
|
[7] |
TENG H H, JIANG Z L. On the transition pattern of the oblique detonation structure[J]. Journal of Fluid Mechanics, 2012, 713:659-669.
|
[8] |
MIAO S, ZHOU J, LIU S, et al. Formation mechanisms and characteristics of transition patterns in oblique detonations[J]. Acta Astronautica, 2018, 142:121-129.
|
[9] |
ZHANG Y, YANG P, TENG H, et al. Transition between different initiation structures of wedge-induced oblique detonations[J]. AIAA Journal, 2018, 56(10):4016-4023.
|
[10] |
CHOI J Y, KIM D W, JEUNG I S, et al. Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation[J]. Proceedings of the Combustion Institute, 2007, 31(2):2473-2480.
|
[11] |
VERREAULT J, HIGGINS A J, STOWE R A. Formation of transverse waves in oblique detonations[J]. Proceedings of the Combustion Institute, 2013, 34(2):1913-1920.
|
[12] |
TENG H H, JIANG Z L, NG H D. Numerical study on unstable surfaces of oblique detonations[J]. Journal of Fluid Mechanics, 2014, 744:111-128.
|
[13] |
LIU Y, HAN X, YAO S, et al. A numerical investigation of the prompt oblique detonation wave sustained by a finite-length wedge[J]. Shock Waves, 2016, 26(6):729-739.
|
[14] |
KASAHARA J, FUJIWARA T, ENDO T, et al. Chapman-Jouguet oblique detonation structure around hypersonic projectiles[J]. AIAA Journal, 2001, 39(8):1553-1561.
|
[15] |
BDZIL J B, STEWART D S. The dynamics of detonation in explosive systems[J]. Annual Review of Fluid Mechanics, 2006, 39(1):263-292.
|
[16] |
YAO J, STEWART D S. On the normal detonation shock velocity-curvature relationship for materials with large activation energy[J]. Combustion and Flame, 1995, 100(4):519-528.
|
[17] |
STEWART D S, YAO J. The normal detonation shock velocity-curvature relationship for materials with nonideal equation of state and multiple turning points[J]. Combustion and Flame, 1998, 113(1-2):224-235.
|
[18] |
CHIQUETE C, SHORT M, QUIRK J J. The effect of curvature and confinement on gas-phase detonation cellular stability[J]. Proceedings of the Combustion Institute, 2019, 37(3):3565-3573.
|
[19] |
JACKSON S I, CHIQUETE C, SHORT M. An intrinsic velocity-curvature-acceleration relationship for weakly unstable gaseous detonations[J]. Proceedings of the Combustion Institute, 2019, 37(3):3601-3607.
|
[20] |
LEUNG C, RADULESCU M I, SHARPE G J. Characteristics analysis of the one-dimensional pulsating dynamics of chain-branching detonations[J]. Physics of Fluids, 2010, 22(12):126101.
|
[21] |
JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228.
|
[22] |
ACKER F, BORGES R B R, COSTA B. An improved WENO-Z scheme[J]. Journal of Computational Physics, 2016, 313:726-753.
|
[23] |
ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1997, 135(2):250-258.
|
[24] |
EINFELD B. On Godunov-type methods for gas dynamics[J]. SIAM Journal on Numerical Analysis, 1988, 25(2):294-318.
|
[25] |
HINDMARSH A C, BROWN P N, GRANT K E, et al. SUNDIALS:Suite of nonlinear and differential/algebraic equation solvers[J]. ACM Transactions on Mathematical Software, 2005, 31(3):363-396.
|
[26] |
KENNEDY C A, CARPENTER M H. Additive Runge-Kutta schemes for convection-diffusion-reaction equations[J]. Applied Numerical Mathematics, 2003, 44:139-181.
|
[27] |
MEDVEDEV A E. Reflection of an oblique shock wave in a reacting gas with a finite relaxation-zone length[J]. Journal of Applied Mechanics and Technical Physics, 2001, 42(2):211-218.
|
[28] |
PRATT D T, HUMPHREY J W, GLENN D E. Morphology of standing oblique detonation waves[J]. Journal Propulsion, 1991, 7(5):837-845.
|
[29] |
OLEJNICZAK J, WRIGHT M J, CANDLER G V. Numerical study of inviscid shock interactions on double-wedge geometries[J]. Journal of Fluid Mechanics, 1997, 352:1-25.
|