[1] 马纪明, 阮凌燕, 付永领, 等. 航空液压泵加速寿命试验现状及方法研究(连载2) 航空液压泵典型失效模式及加速方法[J]. 液压与气动, 2015(7):1-6. MA J M, RUAN L Y, FU Y L, et al. Typical failure modes and accelerated lifetime test methods for aircraft hydraulic pump[J]. Chinese Hydraulics & Pneumatics, 2015(7):1-6 (in Chinese). [2] PECHT M, JAAI R. A prognostics and health management roadmap for information and electronics-rich systems[J]. Microelectronics Reliability, 2010, 50(3):317-323. [3] GEBRAEEL N, ELWANY A, PAN J. Residual life predictions in the absence of prior degradation knowledge[J]. IEEE Transactions on Reliability, 2009, 58(1):106-117. [4] QIU J, SETH B B, LIANG S Y, et al. Damage mechanics approach for bearing lifetime prognostics[J]. Mechanical Systems and Signal Processing, 2002, 16(5):817-829. [5] SINGLETON R K, STRANGAS E G, AVIYENTE S. Extended Kalman filtering for remaining-useful-life estimation of bearings[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3):1781-1790. [6] 张孟迪. 基于PSP模型的40 nm MOS器件HCI可靠性模型研究[D]. 上海:华东师范大学, 2012:33-45. ZHANG M D. The research of PSP-dependent HCI reliability model for 40 nm MOS[D]. Shanghai:East China Normal University, 2012:33-45 (in Chinese). [7] 郑德强, 李海波, 张正平, 等. 感应电动机寿命预测的加速退化试验方法研究[J]. 宇航学报, 2011, 32(10):2280-2284. ZHENG D Q, LI H B, ZHANG Z P, et al. Study on accelerated degradation testing for predicting the life of induction motors[J]. Journal of Astronautics, 2011, 32(10):2280-2284 (in Chinese). [8] 李玲玲, 顾训华, 李凤强, 等. 基于GaAs激光器性能退化的可靠性度量方法[J]. 工程设计学报, 2012, 19(3):166-169. LI L L, GU X H, LI F Q, et al. Reliability assessment method based on GaAs laser performance degradation[J]. Chinese Journal of Engineering Design, 2012, 19(3):166-169 (in Chinese). [9] 肖承地, 刘春军, 刘卫东, 等. 基于加速性能退化的LED灯具可靠性评估[J]. 发光学报, 2014, 35(9):1143-1151. XIAO C D, LIU C J, LIU W D, et al. Reliability assessment of LED lamp based on acceleration degradation test[J]. Chinese Journal of Luminescence, 2014, 35(9):1143-1151 (in Chinese). [10] 陈奇. 大功率LED封装热可靠性与寿命预测研究[D]. 武汉:华中科技大学, 2018:98-122. CHEN Q. Research on thermal reliability and lifetime prediction of high power LED packaging[D]. Wuhan:Huazhong University of Science and Technology, 2018:98-122 (in Chinese). [11] 何怡刚,白月皎,鲁力. 基于DE-QPSO算法的MKRVM对电容式RF-MEMS开关的寿命预测方法[J].电子测量与仪器学报, 2020, 34(12):66-75. HE Y G, BAI Y J, LU L. MKRVM prediction of capacitive RF-MEMS switching life based on DE-QPSO algorithm[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(12):66-75 (in Chinese). [12] 申彦斌, 张小丽, 夏勇, 等. Bi-LSTM神经网络用于轴承剩余使用寿命预测研究[J]. 振动工程学报, 2021, 34(2):411-420. SHEN Y B, ZHANG X L, XIA Y, et al. Bi-LSTM neural network for remaining useful life prediction of bearings[J]. Journal of Vibration Engineering, 2021, 34(2):411-420 (in Chinese). [13] 刘斌, 徐靖, 霍美玲, 等. 基于多尺度自适应注意力网络的剩余寿命预测[J/OL]. 航空学报, (2022-04-07)[2022-05-24]. https://kns.cnki.net/kcms/detail/11.1929.V20220406.1727.008.html. LIU B, XU J, HUO M L, et al. Remaining useful life prediction based on multi-scale adaptive attention network[J/OL]. Acta Aeronautica et Astronautica Sinica, (2022-04-07)[2022-05-24]. https://kns.cnki.net/kcms/detail/11.1929.V20220406.1727.008.html (in Chinese). [14] CUI L R, HUANG J B, LI Y. Degradation models with Wiener diffusion processes under calibrations[J]. IEEE Transactions on Reliability, 2016, 65(2):613-623. [15] ZHANG J S, JIANG Y C, LI X, et al. An adaptive remaining useful life prediction approach for single battery with unlabeled small sample data and parameter uncertainty[J]. Reliability Engineering & System Safety, 2022, 222:108357. [16] 王玺, 胡昌华, 任子强, 等. 基于非线性Wiener过程的航空发动机性能衰减建模与剩余寿命预测[J]. 航空学报, 2020, 41(2):223291. WANG X, HU C H, REN Z Q, et al. Performance degradation modeling and remaining useful life prediction for aero-engine based on nonlinear Wiener process[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):223291 (in Chinese). [17] 夏爽. 基于维纳过程的机电装备性能退化建模与健康状态评估[D]. 武汉:华中科技大学, 2016:27-32. XIA S. Performance degradation modeling and health assessment for mechanical and electrical equipment based on Wiener process[D]. Wuhan:Huazhong University of Science and Technology, 2016:27-32 (in Chinese). [18] KONG D J, QIN C W, HE Y, et al. Sensor-based calibrations to improve reliability of systems subject to multiple dependent competing failure processes[J]. Reliability Engineering & System Safety, 2017, 160:101-113. [19] ZHANG C H, LU X, TAN Y Y, et al. Reliability demonstration methodology for products with Gamma Process by optimal accelerated degradation testing[J]. Reliability Engineering & System Safety, 2015, 142:369-377. [20] TANG S J, YU C Q, WANG X, et al. Remaining useful life prediction of lithium-ion batteries based on the Wiener process with measurement error[J]. Energies, 2014, 7(2):520-547. [21] 孙宏达, 景博, 焦晓璇,等.失效物理与数据驱动融合的燃油泵在线寿命预测[J/OL].仪器仪表学报, (2022-01-29)[2022-04-14].https://kns.cnki.net/kcms/detail/11.2179.th.20220128.1440.032.html. SUN H D, JING B, JIAO X X, et al. Online life prediction of the fuel pump based on failure physics and data-driven fusion[J/OL]. Chinese Journal of Scientific Instrument, (2022-01-29)[2022-04-14]. https://kns.cnki.net/kcms/detail/11.2179.th.20220128.1440.032.html (in Chinese). [22] 范立明, 王崑声, 钱诚. 故障物理与粒子滤波融合的锂电池寿命预测方法[J]. 兵器装备工程学报, 2020, 41(9):171-175. FAN L M, WANG K S, QIAN C. Remaining useful life prediction of lithium battery based on physics of failure and particle filtering[J]. Journal of Ordnance Equipment Engineering, 2020, 41(9):171-175 (in Chinese). [23] CHEN C C, PECHT M. Prognostics of lithium-ion batteries using model-based and data-driven methods[C]//Proceedings of the IEEE 2012 Prognostics and System Health Management Conference. Piscataway:IEEE Press, 2012:1-6. [24] ZHAO F Q, TIAN Z G, ZENG Y. Uncertainty quantification in gear remaining useful life prediction through an integrated prognostics method[J]. IEEE Transactions on Reliability, 2013, 62(1):146-159. [25] ZANG Y, SHANGGUAN W, CAI B G, et al. Hybrid remaining useful life prediction method. A case study on railway D-cables[J]. Reliability Engineering & System Safety, 2021, 213:107746. [26] MA J M, CHEN J, LI J, et al. Wear analysis of swash plate/slipper pair of axis piston hydraulic pump[J]. Tribology International, 2015, 90:467-472. [27] ORCHARD M, WU B Q, VACHTSEVANOS G. A particle filtering framework for failure prognosis[C]//Proceedings of World Tribology Congress III, 2008:883-884. [28] 鲁峰, 黄金泉, 吕怡秋, 等. 基于非线性自适应滤波的发动机气路部件健康诊断方法[J]. 航空学报, 2013, 34(11):2529-2538. LU F, HUANG J Q, LV Y Q, et al. Aircraft engine gas-path components health diagnosis based on nonlinear adaptive filters[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11):2529-2538 (in Chinese). [29] 刘君强, 胡东斌, 潘春露, 等. 基于超统计的多阶段航空发动机剩余寿命预测[J]. 北京航空航天大学学报, 2021, 47(1):56-64. LIU J Q, HU D B, PAN C L, et al. Remaining useful life prediction of multi-stage aero-engine based on super statistics[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1):56-64 (in Chinese). [30] LI S, FANG H J, SHI B. Remaining useful life estimation of Lithium-ion battery based on interacting multiple model particle filter and support vector regression[J]. Reliability Engineering & System Safety, 2021, 210:107542. |