[1] |
KIRKA M M, UNOCIC K A, RAGHAVAN N, et al. Microstructure development in electron beam-melted Inconel 718 and associated tensile properties[J]. JOM, 2016, 68(3):1012-1020.
|
[2] |
IVANOFF T A, WATT T J, TALEFF E M. Characterization of solidification microstructures in vacuum arc remelted nickel alloy 718[J]. Metallurgical and Materials Transactions B, 2019, 50(2):700-715.
|
[3] |
CHEN Z, PENG R L, MOVERARE J, et al. Surface integrity and structural stability of broached Inconel 718 at high temperatures[J]. Metallurgical and Materials Transactions A, 2016, 47(7):3664-3676.
|
[4] |
CRUZADO A, LUCARINI S, LLORCA J, et al. Crystal plasticity simulation of the effect of grain size on the fatigue behavior of polycrystalline Inconel 718[J]. International Journal of Fatigue, 2018, 113:236-245.
|
[5] |
杜金辉,吕旭东,邓群,等. GH4169合金研制进展[J].中国材料进展, 2012, 31(12):12-20. DU J H, LV X D, DENG Q, et al. Progress in GH4169 alloy development[J]. Rare Metals Letters, 2012, 31(12):12-20(in Chinese).
|
[6] |
CHEN Z Y, YANG S F, LI J S, et al. Effects of different hot working techniques on inclusions in GH4738 superalloy produced by VIM and VAR[J]. Materials, 2018, 11(6):1024.
|
[7] |
SCHMIEDT A B, DICKERT H H, BLECK W, et al. Evaluation of maximum non-metallic inclusion sizes in engineering steels by fitting a generalized extreme value distribution based on vectors of largest observations[J]. Acta Materialia, 2015, 95:1-9.
|
[8] |
DEGAWA T, OTOTANI T. Refining of high purity Ni-base superalloy using calcia refractory[J]. Tetsu-to-Hagane, 1987, 73(14):1691-1697.
|
[9] |
SHEVCHENKO D M, WARD R M. Liquid metal pool behavior during the vacuum arc remelting of inconel 718[J]. Metallurgical and Materials Transactions B, 2009, 40(3):263-270.
|
[10] |
CHEN Z Y, YANG S F, QU J L, et al. Effects of different melting technologies on the purity of superalloy GH4738[J]. Materials, 2018, 11(10):1838.
|
[11] |
VERMA N, PISTORIUS P C, FRUEHAN R J, et al. Calcium modification of spinel inclusions in Aluminum-Killed steel:reaction steps[J]. Metallurgical and Materials Transactions B, 2012, 43(4):830-840.
|
[12] |
DENG Z Y, ZHU M Y. Deoxidation Mechanism of Al-Killed steel during industrial refining process[J]. ISIJ International, 2014, 54(7):1498-1506.
|
[13] |
DESCOTES V, BELLOT J P, PERRIN-GUÉRIN V, et al. Titanium nitride (TiN) precipitation in a maraging steel during the vacuum arc remelting (VAR) process-Inclusions characterization and modeling[J]. IOP Conference Series:Materials Science and Engineering, 2016, 143(1):012013.
|
[14] |
JIANG M, WANG X H, CHEN B, et al. Laboratory study on evolution mechanisms of non-metallic inclusions in high srength alloyed steel refined by high basicity slag[J]. ISIJ International, 2010, 50(1):95-104.
|
[15] |
ZAGREBELNYY D, KRANE M J M. Segregation development in multiple melt vacuum arc remelting[J]. Metallurgical and Materials Transactions B, 2009, 40(3):281-288.
|
[16] |
PERICLEOUS K, DJAMBAZOV G, WARD M, et al. A multiscale 3D model of the vacuum arc remelting process[J]. Metallurgical and Materials Transactions A, 2013, 44(12):5365-5376.
|
[17] |
BRICKNELL R H, MULFORD R A, WOODFORD D A. The role of sulfur in the air embrittlement of nickel and its alloys[J]. Metallurgical Transactions A, 1982, 13(7):1223-1232.
|
[18] |
LI B, GLEESON B. Effects of silicon on the oxidation behavior of Ni-base chromia-forming alloys[J]. Oxidation of Metals, 2006, 65(1-2):101-122.
|
[19] |
柴国明,陈希春,郭汉杰. FGH96高温合金中一次碳化物形成规律[J].中国有色金属学报, 2012, 22(8):2205-2213. CHAI G M, CHEN X C, GUO H J. Formation mechanism of primary carbides in FGH96 superalloy[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(8):2205-2213(in Chinese).
|
[20] |
LI M G, MATSUURA H, TSUKIHASHI F. Investigation on the formation mechanism of Ti-bearing non-metallic inclusions in Fe-Al-Ti-ON alloy by inductive separation method[J]. Materials Characterization, 2018, 136:358-366.
|
[21] |
JANG J M, SEO S H, HAN J S, et al. Reassessment of TiN (s)=Ti+N equilibration in liquid iron[J]. ISIJ International, 2015, 55(11):2318-2324.
|
[22] |
SHATYNSKI S R. The thermochemistry of transition metal carbides[J]. Oxidation of Metals, 1979, 13(2):105-118.
|
[23] |
魏文庆,刘炳强,姜军生,等.热处理对Nb-35Ti-4C合金微观组织和力学行为的影响[J].稀有金属材料与工程, 2017, 46(3):777-782. WEI W Q, LIU B Q, JIANG J S, et al. Effect of heat treatment on microstructure and mechanical behavior of Nb-35Ti-4C alloy[J]. Rare Metal Materials and Engineering, 2017, 46(3):777-782(in Chinese).
|
[24] |
耿鑫,孙诗誉,张志超,等.真空感应炉坩埚材质对Cr12钢纯净度的影响[J].材料与冶金学报, 2015, 14(3):175-181. GENG X, SUN S Y, ZHANG Z C, et al. Effect of crucible materials of vacuum induction furnace on cleanliness of steel Cr12[J]. Journal of Materials and Metallurgy, 2015, 14(3):175-181(in Chinese).
|
[25] |
MITCHELL A. Solidification in remelting processes[J]. Materials Science and Engineering:A (Structural Materials:Properties, Microstructure and Processing), 2005, 413-414:10-18.
|
[26] |
CHAPELLE P, BELLOT J P, DUVAL H, et al. Modelling of plasma generation and expansion in a vacuum arc:Application to the vacuum arc remelting process[J]. Journal of Physics D:Applied Physics, 2001, 35:137-150.
|
[27] |
QU J L, YANG S F, CHEN Z Y, et al. Effect of turning amount on metallurgical qualities and mechanical properties of GH4169 Superalloy[J]. Materials, 2019, 12(11):1852.
|