航空学报 > 2019, Vol. 40 Issue (8): 222931-222931   doi: 10.7527/S1000-6893.2019.22931

结合离线知识的时变结构模态参数在线辨识

岳振江1, 刘莉1,2, 余磊1, 康杰1   

  1. 1. 北京理工大学 宇航学院, 北京 100081;
    2. 北京理工大学 飞行器动力学与控制教育部重点实验室, 北京 100081
  • 收稿日期:2019-01-22 修回日期:2019-02-25 出版日期:2019-08-15 发布日期:2019-04-17
  • 通讯作者: 刘莉 E-mail:liuli@bit.edu.cn

Online identification of time-varying structural modal parameters combined with offline knowledge

YUE Zhenjiang1, LIU Li1,2, YU Lei1, KANG Jie1   

  1. 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
  • Received:2019-01-22 Revised:2019-02-25 Online:2019-08-15 Published:2019-04-17

摘要: 飞行器的结构模态参数在线获取对其高效、可靠运行具有重要意义。传统时变结构模态参数辨识方法存在辨识虚假结果较多,抵抗测量数据中的极端异常值能力差等问题,难以有效应用于在线过程。建立一种基于长短时记忆网络的时变结构模态参数在线辨识网络模型,通过数据集构建过程离线地引入先验信息,同时结合模型自身特性,有效提升制约在线辨识应用的可靠性。实验结果表明:在不同时变规律下,与传统辨识方法相比,在线辨识模型能有效缓解虚假结果问题,同时保证辨识结果的连续性;采用α稳定分布模型对脉冲噪声进行建模,验证了其在测量数据包含由于偶发因素产生的极端异常值时在线辨识鲁棒性。

关键词: 时变结构, 模态辨识, 在线, 深度学习, 虚假模态, 脉冲噪声

Abstract: The online acquisition of modal parameters of aircraft structures is of great significance for efficient and reliable operation of the aircraft. The traditional modal parameter identification methods for time-varying structures have problems such as more false results and the poor ability to resist extreme outliers in measured data, becoming difficult to effectively apply to online processes. To solve these problems, an online identification model of time-varying structural modal parameters based on long short-term memory networks is established. For a given time-varying structures, prior information is introduced offline through the data set construction process, and the characteristics of the model are utilized to effectively improve the reliability of the online identification application. The experimental results show that compared with the traditional identification method, the proposed online identification model can effectively alleviate the problem of false results and ensure the continuity of identification results. The α stable distribution model is used to model the impulse noise, verifying the robustness of the online identification model that contains extreme outliers in measured data due to accidental factors.

Key words: time varying structure, modal identification, online, deep learning, spurious modes, impulse noise

中图分类号: