[1] QUEIPO N V, HAFTKA R T, SHYY W, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences, 2005, 41(1):1-28. [2] FORRESTER A I J, KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1):50-79. [3] SIMPSON T W, MAUERY T M, KORTE J J, et al. Kriging models for global approximation in simulation-based multidisciplinary design optimization[J]. AIAA Journal, 2001, 39(12):2233-2241. [4] WANG G G, SHAN S. Review of metamodeling techniques in support of engineering design optimization[J]. Journal of Mechanical Design, 2007, 129(4):370-380. [5] GUTMANN H M. A radial basis function method for global optimization[J]. Journal of Global Optimization, 2001, 19:201-227. [6] SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4):409-423. [7] GUNN S R. Support vector machines for classification and regression[R]. Southampton:University of Southampton, 1998. [8] RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. Massachusetts:The MIT Press, 2006, [9] JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4):455-492. [10] LOCATELLI M. Bayesian algorithms for one-dimensional global optimization[J]. Journal of Global Optimization, 1997, 10(1):57-76. [11] JONES D R. A taxonomy of global optimization methods based on response surface[J]. Journal of Global Optimization, 2001, 21(4):345-383. [12] SCHONLAU M, WELCH W J. Global versus local search in constrained optimization of computer models[J]. Lecture Notes-Monograph Series, 1998, 34:11-25. [13] SASENA M J. Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations[D]. Michigan:University of Michigan, 2002. [14] LIU J, HAN Z H, SONG W P. Comparison of infill sampling criteria in Kriging-based aerodynamic optimization[C]//28th International Congress of the Aeronautical Sciences, 2012. [15] 韩忠华. Kriging模型及代理优化算法研究新进展[J]. 航空学报,2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese). [16] SOBESTER A, LEARY S J, KEANE A J. A parallel updating scheme for approximation and optimization high fidelity computer simulations[J]. Structure and Multidisciplinary Optimization, 2004, 27(5):371-383. [17] GINSBOURGER D, LE RICHE R, CARRARO L. A multi-points criterion for deterministic parallel global optimization based on kriging[C]//The International Conference on Nonconvex Programming:Local and Global Approaches, 2007. [18] GINSBOURGER D, LE RICHE R, CARRARO L. Kriging is well-suited to parallelize optimization[M]//Computational Intelligence in Expensive Optimization Problems, Berlin:Springer, 2010:131-162. [19] LIU J, SONG W P, HAN Z H, et al. Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models[J]. Structural & Multidisciplinary Optimization, 2017, 55(3):1-19. [20] 张德虎, 高正红, 李焦赞, 等. 代理模型选样准则研究[J]. 空气动力学学报, 2011, 29(6):719-725. ZHANG D H, GAO Z H, LI J Z, et al. Study of metamodel sampling criterion[J]. Acta Aerodynamica Sinica, 2011, 29(6):719-725(in Chinese). [21] ZHANG Y, HAN Z H, SHI L X, et al. Multi-round surrogate-based optimization for benchmark aerodynamic design problems:AIAA-2016-1545[R]. Reston, VA:AIAA, 2016. [22] NADARAJAH S. Aerodynamic design optimization:Drag minimization of the NACA0012 in transonic inviscid and the RAE2822 in transonic viscous flow[EB/OL].[2017-09-15]. https://info.aiaa.org/tac/ASG/APATC/AeroDesignOpt-DG/Test. [23] SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4):409-423. [24] JEONG S, MURAYAMA M, YAMAMOTO K. Efficient optimization design method using Kriging model[J]. Journal of Aircraft, 2005, 42(2):413-420. [25] KUMANO T, JEONG S, OBAYASHI S, et al. Multidisciplinary design optimization of wing shape for a small jet aircraft using kriging model:AIAA-2006-0932[R]. Reston, VA:AIAA, 2006. [26] KANAZAKI M, IMAMURA T, JEONG S, et al. High-lift wing design in consideration of sweep angle effect using kriging mode:AIAA-2008-0175[R]. Reston, VA:AIAA, 2008. [27] 邓枫. EGO全局优化算法及应用研究[D]. 南京:南京航空航天大学, 2011. DENG F. Research on EGO global optimization method and application[D]. Nanjing:Nanjing University of Aeronautics & Astronautics, 2011(in Chinese). [28] MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 2(2):239-245. [29] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks. Piscataway, NJ:IEEE Press, 1995. [30] KULFAN B M, BUSSOLETTI J E. Fundamental parametric geometry representations for aircraft component shapes:AIAA-2006-6948[R]. Reston, VA:AIAA, 2006. [31] CARRIER G, DESTARAC D, DUMONT A, et al. Gradient-based aerodynamic optimization with the elsA software:AIAA-2014-0568[R]. Reston, VA:AIAA, 2014. [32] BISSON F, NADARAJAH S, SHI-DONG D. Adjoint-based aerodynamic optimization of benchmark problems:AIAA-2014-0412[R]. Reston, VA:AIAA, 2014. [33] LEE C, KOO D, TELIDETZKI K, et al. Aerodynamic shape optimization of benchmark problems using jetstream:AIAA-2015-0262[R]. Reston, VA:AIAA, 2015. [34] POOLE D J, ALLEN C B, RENDALL T C S. Control point-based aerodynamic shape optimization applied to AIAA ADODG test cases:AIAA-2015-1947[R]. Reston, VA:AIAA, 2015. [35] ANDERSON G R, AFTOSMIS M J, NEMEC M. Aerodynamic shape optimization benchmarks with error control and automatic parameterization:AIAA-2015-1719[R]. Reston, VA:AIAA, 2015. [36] VASSBERG J C, HARRISON N A, ROMAN D L, et al. A systematic study on the impact of dimensionality for a two-dimensional aerodynamic optimization model problem:AIAA-2011-3176[R]. Reston, VA:AIAA, 2011. |