[1] 陈伟芳, 赵文文, 江中正, 等. 稀薄气体动力学矩方法研究综述[J]. 气体物理,2016,1(5):9-24. CHEN W F, ZHAO W W, JIANG Z Z, et al. A review of moment equations for rarefied gas dynamics[J]. Physics of Gases, 2016, 1(5):9-24(in Chinese). [2] BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford:Clarendom Press, 1994. [3] GRAD H. Asymptotic theory of the Boltzmann equation[J]. Physics of Fluids, 1963, 6(2):147. [4] BHATNAGAR P L, GROSS E P, KROOK M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3):511-525. [5] BROADWELL J E. Study of rarefied shear flow by the discrete velocity method[J]. Journal of Fluid Mechanics, 1964, 19(3):401-414. [6] CHAPMAN S C T. The mathematical theory of non-uniform gases[M]. 2nd ed. London:Cambridge University Press, 1953. [7] 赵文文. 高超声速流动Burnett方程稳定性与数值计算方法研究[D]. 杭州:浙江大学, 2014. ZHAO W W. Linearized stability analysis and numerical computation of Burnett equations in hypersonic flow[D]. Hangzhou:Zhejiang University, 2014(in Chinese). [8] GRAD H. On the kinetic theory of rarefied gases[J]. Communications on Pure and Applied Mathematics,1949, 2(4):331-407. [9] TORRILHON M. Modeling nonequilibrium gas flow based on moment equations[J]. Annual Review of Fluid Mechanics, 2016, 48:429-458. [10] 蔡振宁. 气体动理学中数值矩方法的算法研究与应用[D]. 北京:北京大学, 2013. CAI Z N. Investigations and applications of the numerical moment method in the kinetic theory of gases[D]. Beijing:Peking University, 2013(in Chinese). [11] XU K, HUANG J. A unified gas-kinetic scheme for continuum and rarefied flows[J]. Journal of Computational Physics, 2010, 229(20):7747-7764. [12] LI Z, ZHANG H. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum[J]. Journal of Computational Physics, 2004, 193(2):708-738. [13] EU B C. Kinetic theory and irreversible thermodynamics[M]. New York:Wiley, 1992:327-421. [14] EU B C. Generalized thermodynamics:The thermodynamics of irreversible processes and generalized hydrodynamics[M]. New York:Kluwer Academic Publishers, 2002. [15] 肖洪,商雨禾,吴迪,等. 稀薄气体动力学的非线性耦合本构方程理论及验证[J]. 航空学报, 2015, 36(7):2091-2104. XIAO H, SHANG Y H, WU D, et al. Nonlinear coupled constitutive relations and its validation for rarefied gas flows[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2091-2104(in Chinese). [16] MYONG R S. Thermodynamically consistent hydrodynamic computational models for high-Knudsen-number gas flows[J]. Physics of Fluids, 1999, 11(9):2788-2802. [17] MYONG R S. A computational method for Eu's generalized hydrodynamic equations of rarefied and microscale gasdynamics[J]. Journal of Computational Physics, 2001, 168(1):47-72. [18] MYONG R S. A generalized hydrodynamic computational model for rarefied and microscale diatomic gas flows[J]. Journal of Computational Physics, 2004, 195(2):655-676. [19] JIANG Z Z, CHEN W F, ZHAO W W. Numerical analysis of the micro-Couette flow using a non-Newton-Fourier model with enhanced wall boundary conditions[J]. Microfluidics and Nanofluidics, 2018, 22(1):10. [20] JIANG Z Z, ZHAO W W, CHEN W F. A three-dimensional finite volume method for conservation laws in conjunction with modified solution for nonlinear coupled constitutive relations[C]//30th International Symposium on Rarefied Gas Dynamics, 2016:040002-1-040002-8. [21] JIANG Z Z, CHEN W F, ZHAO W W. Numerical simulation of three-dimensional non-equilibrium flows using a second-order nonlinear model[C]//21st AIAA International Space Planes and Hypersonic Technologies Conference. Reston, VA:AIAA, 2017:2346. [22] EU B C. A modified moment method and irreversible thermodynamics[J]. The Journal of Chemical Physics, 1980, 73(6):2958-2969. [23] KUBO R. Generalized cumulant expansion method[J]. Journal of the Physical Society of Japan, 1962, 17(7):1100-1120. [24] EU B C, ALGHOUL M. Generalized hydrodynamics and shock waves[J]. Physical Review E, 1997, 56(3):2981-2992. [25] XIAO H, TANG K. A unified framework for modeling continuum and rarefied gas flows[J]. Scientific Reports, 2017, 7(1):13108. [26] TANG K, XIAO H. Entropy conditions involved in the nonlinear coupled constitutive method for solving continuum and rarefied gas flows[J]. Entropy, 2017, 19(12):683. [27] ZHAO W W, JIANG Z Z, CHEN W F. Computation of 1-D shock structure using nonlinear coupled constitutive relations and generalized hydrodynamic equations[C]//30th International Symposium on Rarefied Gas Dynamics, 2016:140007-1-140007-8. [28] MYONG R S. Gaseous slip models based on the Langmuir adsorption isotherm[J]. Physics of Fluids, 2004, 16(1):104-117. [29] MAWELL J C. On stresses in rarified gases arising from inequalities of temperature[J]. Philosophical Transactions of the Royal Society of London, 1879, 170:231-256. [30] SMOLUCHOWSKI V S M. Über wärmeleitung in verdünnten gasen[J]. Annalen der Physik, 1898, 300(1):101-130. [31] GÖKÇEN T, MACCORMACK R W. Nonequilibrium effects for hypersonic transitional flows using continuum approach:AIAA-1989-0461[R]. Reston, VA:AIAA, 1989. [32] LOCKERBY D A, REESE J M, GALLIS M A. Capturing the Knudsen layer in continuum-fluid models of nonequilibrium gas flows[J]. AIAA Journal, 2005, 43(6):1391-1393. [33] LOCKERBY D A, REESE J M, EMERSON D R, et al. Velocity boundary condition at solid walls in rarefied gas calculations[J]. Physical Review E, 2004, 70(1):017303. [34] CERCIGNANI C. Higher order slip according to the linearized Boltzmann equation:AS-64-19[R]. Berkeley:California University Berkeley Inst of Engineering Research, 1964. [35] BESKOK A M, KARNIADAKIS G E, TRIMMER W. Rarefaction and compressibility effects in gas microflows[J]. Journal of Fluids Engineering, 1996, 118(3):448-456. [36] DEISSLER R G. An analysis of second-order slip flow and temperature-jump boundary conditions for rarefied gases[J]. International Journal of Heat and Mass Transfer, 1964, 7(6):681-694. [37] HSIA Y T, DOMOTO G A. An experimental in-vestigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearances[J]. Journal of Lubrication Technology, 1983, 105(1):120-129. [38] LOCKERBY D A, REESE J M. High-resolution Burnett simulations of micro Couette flow and heat transfer[J]. Journal of Computational Physics, 2003, 188(2):333-347. [39] BAO F B, LIN J Z, SHI X. Burnett simulation of flow and heat transfer in micro Couette flow using second-order slip conditions[J]. Heat and Mass Transfer, 2007, 43(6):559-566. [40] KIM K H, KIM C, RHO O. Methods for the accurate computations of hypersonic flows:I. AUSMPW+ scheme[J]. Journal of Computational Physics, 2001, 174(1):38-80 [41] LOFTHOUSE A J, SCALABRIN L C, BOYD I D. Velocity slip and temperature jump in hypersonic aerothermodynamics[J]. Journal of Thermophysics and Heat Transfer, 2008, 22(1):38-49. [42] 陈伟芳,吴明巧,赵玉新,等. 超声速平板绕流DSMC/EPSM混合算法研究[J]. 空气动力学学报, 2002,20(4):441-445. CHEN W F, WU M Q, ZHAO Y X, et al. The study of hybrid DSMC/EPSM method of supersonic flat plate[J]. Acta Aerodynamica Sinica, 2002, 20(4):441-445(in Chinese). [43] 石于中, 吴其芬, 任兵. 有限平板绕流Monte-Carlo方法仿真[J]. 空气动力学学报, 1991,9(3):324-329. SHI Y Z, WU Q F, REN B. Direct simulation Monte Carlo method for rarefied flow over a flat plate[J]. Acta Aerodynamica Sinica, 1991, 9(3):324-329(in Chinese). [44] 胡远, 陈松, 孙泉华, 等. 超声速平板绕流的全流域阻力特性研究[C]//第三届全国高超声速科技学术会议, 2010:1-9. HU Y, CHEN S, SUN Q H, et al. Study of drag property in the entire flow regime for supersonic flow over a flat plate[C]//3rd Hypersonic Science Technology Conference, 2010:1-9(in Chinese). [45] SUN Q, BOYD I D. Drag on a flat plate in low-Reynolds-number gas flows[J]. AIAA Journal, 2004, 42(6):1066-1072. [46] BOYD I D, CHEN G, CANDLER G V. Predicting failure of the continuum fluid equations in transitional hypersonic flows[J]. Physics of Fluids, 1995, 7(1):210-219. |