[1] HENSHAW M J, BADCOCK K J, VIO G A, et al. Non-linear aeroelastic prediction for aircraft applications[J]. Progress in Aerospace Sciences, 2007, 43(4-6):65-137. [2] HONG M S, KURUVILA G, BHATIA K G, et al. Evaluation of CFL3D for unsteady pressure and flutter predictions[C]//44th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2003. [3] LUCIA D J, BERAN P S, SILVA W A. Reduced-order modeling:new approaches for computational physics[J]. Progress in Aerospace Sciences, 2004, 40(1):51-117. [4] HE L. Fourier methods for turbomachinery applications[J]. Progress in Aerospace Sciences, 2010, 46(8):329-341. [5] HALL K C, THOMAS J P, CLARK W S. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique[J]. AIAA Journal, 2002, 40(5):879-886. [6] EKICI K, HALL K C, DOWELL E H. Computationally fast harmonic balance methods for unsteady aerodynamic predictions of helicopter rotors[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2008. [7] WOODGATE M A, BADCOCK K J. Implicit harmonic balance solver for transonic flow with forced motions[J]. AIAA Journal, 2009, 47(4):893-901. [8] 陈琦, 陈坚强, 谢昱飞, 等. 谐波平衡法在非定常流场中的应用[J]. 航空学报, 2014, 35(3):736-743. CHEN Q, CHEN J Q, XIE Y F, et al. Application of harmonic balance method to unsteady flow field[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):736-743(in Chinese). [9] RONCH A D, MCCRACKEN A J, BADCOCK K J, et al. Linear frequency domain and harmonic balance predictions of dynamic derivatives[J]. Journal of Aircraft, 2013, 50(3):694-707. [10] 贡伊明, 刘战合, 刘溢浪, 等. 时间谱方法中的高效GMRES算法[J]. 航空学报, 2017, 38(7):120894. GONG Y M, LIU Z H, LIU Y L, et al. Efficient GMRES algorithm in time spectral method[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):120894(in Chinese). [11] THOMAS J P, DOWELL E H, HALL K C. Nonlinear inviscid aerodynamic effects on transonic divergence, flutter and limit-cycle oscillations[J]. AIAA Journal, 2002, 40(4):638-646. [12] THOMAS J P, DOWELL E H, HALL K C. Modeling viscous transonic limit-cycle oscillation behavior using a harmonic balance approach[J]. Journal of Aircraft, 2004, 41(6):1266-1274. [13] LIU L, DOWELL E H. Harmonic balance approach for an airfoil with a freeplay control surface[J]. AIAA Journal, 2005, 43(4):802-815. [14] 刘南, 白俊强, 华俊, 等. 高阶谐波平衡方法中非物理解来源分析及改进方法研究[J]. 力学学报, 2016, 48(4):897-906. LIU N, BAI J Q, HUA J, et al. Investigation of the source and improvement of non-physical solutions in high-order harmonic balance[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4):897-906(in Chinese). [15] EKICI K, HALL K C. Harmonic balance analysis of limit cycle oscillations in turbomachinery[J]. AIAA Journal, 2011, 49(7):1478-1487. [16] YAO W, MARQUES S. Prediction of transonic limit-cycle oscillations using an aeroelastic harmonic balance method[J]. AIAA Journal, 2015, 53(7):2040-2051. [17] SPALART P R, ALLMARAS S R. An one-equation turbulence model for aerodynamic flows[C]//30th Aerospace Sciences Meeting & Exhibit. 1992. [18] ROE P. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372. [19] JAMESON A, SCHMIDT W, TURKEL E. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes[C]//14th AIAA Fluid and Plasma Dynamics Conference. Reston, VA:AIAA, 1981. [20] JAMESON A. Solution of the Euler equations for two-dimensional transonic flow by a multigrid method:MAE Report No. 1613[R]. Princeton University, 1983. [21] 张伟伟, 高传强, 叶正寅. 气动弹性计算中网格变形方法研究进展[J]. 航空学报, 2014, 35(2):303-319. ZHANG W W, GAO C Q, YE Z Y. Research progress on mesh deformation method in computational aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):303-319(in Chinese). [22] ALLEN C B, RENDALL T C S. Unified approach to CFD-CSD interpolation and mesh motion using radial basis functions[C]//25th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2007. [23] THOMPSON J F, SONI B K, WEATHERILL N P. Handbook of grid generation[M]. CRC Press, 1998. [24] 刘南. 机翼跨声速非线性颤振及高效分析方法研究[D]. 西安:西北工业大学, 2016:123-126. LIU N. Investigation of transonic nonlinear flutter and efficient analysis approach[D]. Xi'an:Northwestern Polytechnical University, 2016:123-126(in Chinese). [25] YATES E C. AGARD standard aeroelastic configurations for dynamic response I-wing 445.6, AGARD Report No. 765[R]. 1985. [26] SILVA W A, PERRY B, CHWALOWSKI P. Evaluation of linear, inviscid, viscous, and reduced-order modeling aeroelastic solutions of the AGARD445.6 wing using root locus analysis:AIAA-2014-0496[R]. Reston, VA:AIAA, 2014. [27] 贺顺, 杨智春, 谷迎松. 机翼跨音速颤振特性的频域分析[J]. 中国科学:物理学力学天文学, 2014, 44(3):285-292. HE S, YANG Z C, GU Y S. Frequency domain analysis for wing transonic flutter[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2014, 44(3):285-292(in Chinese). [28] THOMAS J P, CUSTER C H, DOWELL E H, et al. Compact implementation strategy for a harmonic balance method within implicit flow solvers[J]. AIAA Journal, 2013, 51(6):1374-1381. [29] ISOGAI K. On the transonic-dip mechanism of flutter of a sweptback wing[J]. AIAA Journal, 1979, 17(7):793-795. [30] 张伟伟. 基于CFD技术的高效气动弹性分析方法[D]. 西安:西北工业大学, 2006:113-122. ZHANG W W. Efficient analysis for aeroelasticity based on Computational Fluid Dynamics[D]. Xi'an:Northwestern Polytechnical University, 2006:113-122(in Chinese). [31] BENDIKSEN O O. Transonic stabilization laws for unsteady aerodynamic and flutter[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, VA:AIAA, 2012. [32] BENDIKSEN O O. Review of unsteady transonic aerodynamics:Theory and applications[J]. Progress in Aerospace Sciences, 2011, 47(2):135-167. [33] BERAN P S, KHOT N S, EASTEP F E, et al. Numerical analysis of store-induced limit-cycle oscillation[J]. Journal of Aircraft, 2004, 41(6):1315-1326. |