[1] SWANSON S M, JACKLIN A, BLAAS A, et al. Individual blade control effects on blade-vortex interaction noise[C]//The American Helicopter Society 50th Annual Forum. Fairfax, VA:American Helicopter Society, 1994. [2] SPLETTSTOESSER W R, SCHULTZ K J, VAN DER-WALL B, et al. Helicopter noise reduction by individual blade control (IBC)-Selected flight test and simulation results[C]//The RTA-AVT Symposium, 2000. [3] 倪同兵, 招启军, 马砾. 基于IBC方法的旋翼BVI噪声主动控制机理[J]. 航空学报, 2017, 38(7):120744. NI T B, ZHAO Q J, MA L. Active control mechanism of rotor BVI noise based on IBC method[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):120744(in Chinese). [4] FÜRST D, KEBLER C, AUSPITZER T, et al. Closed loop IBC-system and flight test results on the CH-53G helicopter[C]//The American Helicopter Society 60th Annual Forum, 2004. [5] ROGET B, CHOPRA I. Individual blade control methodology for a rotor with dissimilar blades[J]. Journal of the American Helicopter Society, 2003, 48(3):176-185. [6] 孙超, 陆洋, 马锦超. 基于独立桨距控制的电控旋翼主动振动控制[J]. 南京航空航天大学学报, 2016, 48(2):251-255. SUN C, LU Y, MA J C. Active vibration control through individual blade control on electrically controlled rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(2):251-255(in Chinese). [7] PAYNE P R. Higher harmonic rotor control:The possibilities of third and higher harmonic feathering for delaying the stall limit in helicopter[J]. Aircraft Engineering and Aerospace Technology, 1958, 2(8):222-226. [8] KEBLER C. Active rotor control for helicopters:Individual blade control and swashplateless rotor designs[J]. CEAS Aeronautical Journal, 2011(1):23-54. [9] FRIEDMANN P P. On-blade control of rotor vibration, noise, and performance:Just around the corner?[J]. Journal of the American Helicopter Society, 2014, 59(4):041001. [10] 韩东, 董晨, 魏武雷, 等. 自适应旋翼研究进展[J]. 航空学报, 2018, 39(4):221603. HAN D, DONG C, WEI W L, et al. Research progress in adaptive rotor to improve rotor performance[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):221603(in Chinese). [11] ARCIDIACONO P J. Theoretical performance of helicopters having second and higher harmonic feathering control[J]. Journal of the American Helicopter Society, 1961, 5(2):8-19. [12] SHAW J, ALBION N, HANKER E J, Jr, et al. Higher harmonic control:Wind tunnel demonstration of fully effective vibratory hub force suppression[J]. Journal of the American Helicopter Society, 1989, 34(1):14-25. [13] NORMAN T R, THEODORE C, SHINODA P, et al. Full-scale wind tunnel test of a UH-60 individual blade control system for performance improvement and vibration, loads, and noise control[C]//The American Helicopter Society 65th Annual Forum. Fairfax, VA:American Helicopter Society, 2009. [14] JACKLIN S A, LEYLAND J A, BLAAS A. Full-scale wind tunnel investigation of a helicopter individual blade control system[C]//34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 1993:576-586. [15] JACKLIN S A, BLASS A, TEVES D, et al. Reduction of helicopter BVI noise, vibration, and power consumption through individual blade control[C]//The American Helicopter Society 51st Annual Forum. Fairfax, VA:American Helicopter Society, 1995:662-680. [16] CHENG R P, THEODORE C R, CELI R. Effects of two/rev higher harmonic control on rotor performance[J]. Journal of the American Helicopter Society, 2003, 48(1):18-27. [17] CHENG R P, CELI R. Optimum two-per-revolution inputs for improved rotor performance[J]. Journal of Aircraft, 2005, 42(6):1409-1417. [18] YEO H, ROMANDER E A, NORMAN T R. Investigation of rotor performance and loads of a UH-60A individual blade control system[C]//The American Helicopter Society 66th Annual Forum, 2010. [19] KÜFAMANN P, BARTELS R, WALL B G. Rotor performance enhancement via localized pitch control and its effects on hub vibration and pitch link loads[J]. CEAS Aeronautical Journal, 2017(8):181-196. [20] 王超, 陆洋, 陈仁良. 直升机桨距主动控制对旋翼性能的影响[J]. 航空动力学报, 2014, 29(8):1922-1929. WANG C, LU Y, CHEN R L. Effect of active blade pitch control on helicopter rotor performance[J]. Journal of Aerospace Power, 2014, 29(8):1922-1929(in Chinese) [21] 张勇刚, 崔钊, 韩东, 等. 加装格尼襟翼旋翼的直升机飞行性能[J]. 航空学报, 2016, 37(7):2208-2217. ZHANG Y G, CUI Z, HAN D, et al. Flight performance of helicopter rotors with Gurney flaps[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2208-2217(in Chinese). [22] PETERS D A, HAQUANG N. Dynamic inflow for practical applications[J]. Journal of the American Helicopter Society, 1988, 33(4):64-68. [23] JOHNSON W. Helicopter theory[M]. New York:Dover Publications, Inc., 1994:222-238 [24] LEISHMAN J G. Principles of helicopter aerodynamics[M]. New York:Cambridge University Press, 2006:228-231 [25] YEO H, BOUSMAN W G, JOHNSON W. Performance analysis of a utility helicopter with standard and advanced rotors[J]. Journal of the American Helicopter Society, 2004, 49(3):250-270. [26] HILBERT K B. A mathematical model of the UH-60 helicopter:NASA-TM-85890[R]. Washington, D.C.:NASA, 1984. [27] DAVIS S J. Predesign study for a modern 4-bladed rotor for the RSRA:NASA-TM-CR-166155[R]. Washington, D.C.:NASA, 1981. [28] ANDERSON J D, Jr. Fundamentals of aerodynamics[M]. New York:McGraw-Hill Education, 2001:93-98. |