[1] KRUTH J P, VANDENBROUCKE B, VAERENBERGH J V, et al. Benchmarking of different SLS/SLM processes as rapid manufacturing techniques[C]//International Conference of Polymers & Moulds Innovations(PMI). Gent, Belgium:Polymers & Moulds Innovations, 2005. [2] VRANCKEN B, CAIN V, KNUTSEN R, et al. Residual stress via the contour method in compact tension specimens produced via selective laser melting[J]. Scripta Materialia, 2014, 87(87):29-32. [3] SHIOMI M, OSAKADA K, NAKAMURA K, et al. Residual stress within metallic model made by selective laser melting process[J]. CIRP Annals-Manufacturing Technology, 2004, 53(1):195-198. [4] WANG D, YANG Y, ZHANG M, et al. Study on SLM fabrication of precision metal parts with overhanging structures[C]//IEEE International Symposium on Assembly and Manufacturing. Piscataway, NJ:IEEE Press, 2013:222-225. [5] MERCELIS P, KRUTH J P, VAERENBERGH J V. Feedback control of selective lasermelting[C]//Advanced Research in Virtual and Rapid Prototyping. Leiria, Portugal:CRC Press, 2007:521-527. [6] WANG D, YANG Y, YI Z, et al. Research on the fabricating quality optimization of the overhanging surface in SLM process[J]. International Journal of Advanced Manufacturing Technology, 2013, 65(9-12):1471-1484. [7] CALIGNANO F. Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting[J]. Materials & Design, 2014, 64(9):203-213. [8] 刘婷婷, 张长东, 廖文和, 等. 激光选区熔化成形悬垂结构熔池行为试验分析[J]. 中国激光, 2016, 43(12):70-76. LIU T T, ZHANG C D, LIAO W H, et al. Pool behavior experimental analysis of overhang structure by selective laser melting[J]. Chinese Journal of Lasers, 2016,43(12):70-76(in Chinese). [9] CHEN H, GU D, XIONG J, et al. Improving additive manufacturing processability of hard-to-process overhanging structure by selective laser melting[J]. Journal of Materials Processing Technology, 2017, 250:99-108. [10] ROBERTS I A, WANG C J, ESTERLEIN R, et al. A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing[J]. International Journal of Machine Tools & Manufacture, 2009, 49(12):916-923. [11] 陈德宁, 刘婷婷, 廖文和, 等. 扫描策略对金属粉末选区激光熔化温度场的影响[J]. 中国激光, 2016, 43(4):68-74. CHEN D N, LIU T T, LIAO W H, et al. Temperature field during selective laser melting of metal powder under different scanning strategies[J]. Chinese Journal of Lasers, 2016, 43(4):68-74(in Chinese). [12] 李雅莉. 选区激光熔化AlSi10Mg温度场及应力场数值模拟研究[D]. 南京:南京航空航天大学, 2015:15-24. LI Y L. Numerical investigation on temperature field and stress field during selective laser melting of AlSi10Mg[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015:15-24(in Chinese). [13] THIJS L, VERHAEGHE F, CRAEGHS T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9):3303-3312. [14] 周建兴, 刘瑞祥, 陈立亮, 等. 凝固过程数值模拟中的潜热处理方法[J]. 铸造, 2001, 50(7):404-407. ZHOU J X, LIU R X, CHEN L L, et al. The approaches of latent heat treatment[J]. China Foundry, 2001, 50(7):404-407(in Chinese). [15] YIN J, ZHU H, KE L, et al. Simulation of temperature distribution in single metallic powder layer for laser micro-sintering[J]. Computational Materials Science, 2012, 53(1):333-339. [16] 刘洋. 激光选区熔化成型机理和结构特征直接制造研究[D]. 广州:华南理工大学, 2015:27-34. LIU Y. Research on the mechanism of selective laser melting and direct manufacturing of structural features[D]. Guangzhou:South China Universityof Technology, 2015:27-34(in Chinese). [17] ZHAO C, FEZZAA K, CUNNINGHAM R W, et al.Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction[J]. Sci Rep, 2017, 7(1):3602. [18] 陈军城, 俞海良, 芦凤桂, 等. 高强钢激光穿透焊熔池温度场数值模拟[J]. 应用激光, 2008, 28(3):177-180. CHEN J C, YU H L, LU F G, et al. Numerical simulation for temperature field in molten pool of deep penetration laser welding of high strength steel[J]. Applied Laser, 2008, 28(3):177-180(in Chinese). [19] GU D, SHEN Y. Effects of processing parameters on consolidation and microstructure of W-Cu components by DMLS[J]. Journal of Alloys & Compounds, 2009, 473(1):107-115. [20] WEI P, WEI Z, CHEN Z, et al.The AlSi10Mg samples produced by selective laser melting:Single track, densification, microstructure and mechanical behavior[J]. Applied Surface Science, 2017, 408:38-50. [21] 邹亚桐, 魏正英, 杜军, 等. AlSi10Mg激光选区熔化成形工艺参数对致密度的影响与优化[J]. 应用激光, 2016, 36(6):656-662. ZOU Y T, WEI Z Y, DU J, et al. Effect and optimization of processing parameters on relative density of AISil0Mg alloy parts by selective laser melting[J]. Applied Laser, 2016, 36(6):656-662(in Chinese). [22] 刘杰, 杨永强, 王迪, 等. 选区激光熔化成型悬垂结构的计算机辅助工艺参数优化[J]. 中国激光, 2012, 39(5):88-94. LIU J, YANG Y Q, WANG D, et al. Computer-aided optimization of the process parameters for fabricating overhanging structure by selective laser melting[J]. Chinese Journal of Lasers, 2012, 39(5):88-94(in Chinese). |