[1] VOGELESANG L B, VLOT A. Development of fibre metal laminates for advanced aerospace structures[J]. Journal of Materials Processing Technology, 2000, 103(1):1-5. [2] 孟维迎, 谢里阳, 刘建中, 等. 玻璃纤维增强铝锂合金层板单峰过载疲劳寿命性能对比研究[J]. 航空学报, 2016, 37(5):1536-1543. MENG W Y, XIE L Y, LIU J Z, et al. Contrast study on fatigue life performance of glass fiber reinforced Al-Li alloy laminates under unimodal overload[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1536-1543(in Chinese). [3] 蔺晓红, 张涛, 张小波, 等. 碳纤维增强铝合金板的抗冲击性能[J]. 爆炸与冲击, 2013, 33(3):303-310. LIN X H, ZHANG T, ZHANG X B, et al. Impact resistance of carbon fiber-reinforced aluminumlaminates[J]. Explosion and Shock Waves, 2013, 33(3):303-310(in Chinese). [4] HAMED Z, MOHADESEH F, GIANGIACOMO M, et al. Low velocity impact analysis of fiber metal laminates (FMLs) in thermal environments withvarious boundary conditions[J]. Composite Structures, 2016, 149(1):170-183. [5] 马玉娥, 胡海威, 熊晓枫. 低速冲击下FML、铝板和复材的损伤对比研究[J]. 航空学报, 2014, 35(7):1902-1911. MA Y E, HU H W, XIONG X F. Comparison of damage in FMLs, aluminum and composite panels subjected to low-velocity impact[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1902-1911(in Chinese). [6] 万云, 章继峰, 王振清, 等. 玻纤铝合金层板受低速冲击损伤实验和仿真[J]. 哈尔滨工程大学学报, 2015, 36(6):769-773. WAN Y, ZHANG J F, WANG Z Q, et al. Low-velocity impact damage on glassfibre reinforced aluminum laminates:Experiments and finite element analysis[J]. Journal of Harbin Engineering University, 2015, 36(6):769-773(in Chinese). [7] HEN Q, GUAN Z D, LI Z S, et al. Experimental investigation on impact performances of GLARE laminates[J]. Chinese Journal of Aeronautics, 2015, 28(6):1784-1792. [8] YU G C, WU L Z, MA L, et al. Low velocity impact of carbon fiber aluminumlaminates[J]. Composite Structures, 2015, 119:757-766. [9] 陶杰, 李华冠, 潘蕾, 等. 纤维金属层板的研究与发展趋势[J]. 南京航空航天大学学报, 2015, 47(5):626-636. TAO J, LI H G, PAN L, et al. Review on research and development of fiber metal laminates[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(5):626-636(in Chinese). [10] HU Y B, LI H G, TAO J, et al. The effects of temperature variation on mechanical behaviors ofpolyetheretherketone-based fiber metal laminates[J/OL]. Polymer Composites. (2016-05-31)[2017-11-22]. http://onlinelibrary.wiley.com/doi/10.1002/pc.24085. [11] AHAMADI H, SABOURI H, LIAGHAT G, et al. Experimental and numerical investigation on the high velocity impact response of GLARE with different thickness ratio[J]. Procedia Engineering, 2011, 10(7):869-874. [12] YAGHOUBI A S, LIAW B. Thickness influence on ballistic impact behaviors of GLARE 5 fiber-metal laminated beams:Experimental and numericalstudies[J]. Composite Structures, 2012, 94(8):2585-2598. [13] ABDULLAH M R, CANTWELL W J. The impact resistance of polypropylene-basedfibre-metal laminates[J]. Composites Science and Technology, 2006, 66(11-12):1682-1693. [14] YAGHOUBI A S, LIAW B. Effect of lay-up orientation on ballistic impact behaviors of GLARE 5 FML beams[J]. International Journal of Impact Engineering, 2013, 54(4):138-148. [15] ZAREI H, SADIGHI M, MINAK G. Ballistic analysis of fiber metal laminates impacted by fiat and conical impactors[J]. Composite Structures, 2017, 161:65-72. [16] RAJKUMAR G R, KRISHNA M, MURTHY H N N, et al. Experimental investigation of low velocity repeated impacts on glass fiber metal composites[J]. Journal of Materials Engineering and Performance, 2012, 21(7):1485-1490. [17] RAJKUMAR G R, KRISHNA M, MURTHY H N N, et al. Investigation of repeated low velocity impact behavior of GFRP/aluminium and CFRP/aluminium laminates[J]. Journal of Soft Computing and Engineering, 2012, 1(6):2231-2307. [18] MORINIÈRE F D, ALDERLIESTEN R C, TOOSKI M Y, et al. Damage evolution in GLARE fiber-metal laminate under repeated low velocity impact tests[J]. Central European Journal of Engineering, 2012, 2(4):603-611. [19] TOOSKI M Y, ALDERLIESTEN R C, GHAJAR R, et al. Experimental investigation on distance effects in repeated low velocity impact on fiber-metal laminates[J]. Composite Structures, 2013, 99(5):31-40. [20] BOTELHO E C, SILVA R A, PARDINI L C, et al. Review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures[J]. Materials Research, 2006, 9(3):247-256. [21] RECHT R F, LPSON T W. Ballistic perforation dynamics[J]. International Journal of Applied Mechanics (Transactions of ASME), 1963, 30(3):384-390. [22] JOHONSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of 7th Symposium on Ballistics. Hegue:International Ballistics Committee, 1983:541-547. [23] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2):329-334. |