[1] RICHARD M, SCOTT M. X-51 development: A chief engineer's perspective view[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011: 13-17.
[2] KUCHEMANN D. The aerodynamic design of aircraft[M]. Oxford: Pergamon Press, 1978: 448-510.
[3] HEISER W H, PRATT D T. Hypersonic airbreathing propulsion[M]. Reston: AIAA Inc. Press, 1994: 32-33.
[4] HANEY J W, BEAULIEU W D. Waverider inlet integration issues: AIAA-1994-0383[R]. Reston: AIAA, 1994.
[5] BERENS T M,BISSINGER N C. Forebody precompression effects and inlet entry conditions for hypersonic vehicles[J]. Journal of Spacecraft and Rockets, 1998, 35(1): 30-36.
[6] BILLIG F S, BAURLE R A, TAM C J. Design and analysis of streamline traced hypersonic inlets: AIAA-1999-4974[R]. Reston: AIAA,1999.
[7] SMART M K. Design of three-dimensional hypersonic inlets with rectangular to elliptical shape transition[J]. Journal of Propulsion and Power, 1999, 15(3): 408-416.
[8] VIJAY S, ANDREW G, MARK S. Automated design optimization for the P2 and P8 hypersonic inlets[J]. Journal of Aircraft, 1997, 34(2): 308-316.
[9] MARY K L O, MARK J L. Optimized scramjet integration on a waverider[J]. Journal of Aircraft, 1992, 29(6): 1114-1123.
[10] TAKASHIMA N, LEWIS M J. Engine-airframe integration on osculating cone waverider-based vehicle designs: AIAA-1996-2551[R]. Reston: AIAA, 1996.
[11] O'BRIEN T F, MARK J L. Rocket-based combined-cycle engine integration on an osculating cone waverider vehicle[J]. Journal of Aircraft, 2001, 38(6): 1117-1123.
[12] SOBIECZKY H, DOUGHERTY F C, JONES K D. Hypersonic waverider design from given shock waves[C]//Proceedings of the 1st International Hypersonic Waverider Symposium. Washington, D.C.: NASA, 1990.
[13] RYAN P S, MARK J L. Design of an engine airframe integrated hypersonic missile within fixed box constraints: AIAA-1999-0509[R]. Reston: AIAA, 1999.
[14] YOU Y C, ZHU C X, GUO J L. Dual waverider concept for the integration of hypersonic inward-turning inlet and airframe forebody: AIAA-2009-7421[R]. Reston: AIAA, 2009.
[15] LI Y Q, AN P, PAN C J, et al. Integration methodology for waverider-derived hypersonic inlet and vehicle forebody: AIAA-2014-3229[R]. Reston: AIAA, 2014.
[16] 贺旭照, 周正, 倪鸿礼. 密切内锥乘波前体进气道一体化设计和性能分析[J]. 推进技术, 2012, 33(4): 510-515. HE X Z, ZHOU Z, NI H L. Integrated design methods and performance analyses of osculating inward turning cone waverider forebody inlet(OICWI)[J]. Journal of Propulsion Technology, 2012, 33(4): 510-515 (in Chinese).
[17] HE X Z,LE J L, ZHOU Z, et al. Osculating inward turning cone waverider/inlet (OICWI) design methods and experimental study: AIAA-2012-5810[R]. Reston: AIAA, 2012.
[18] 周正, 贺旭照, 卫锋, 等. 密切曲内锥乘波前体进气道低马赫数性能试验研究[J]. 推进技术, 2016, 37(8): 1455-1460. ZHOU Z, HE X Z, WEI F, et al. The experimental studies of osculating inward turning cone waveriderforebody inlet (OICWI) at low Mach number conditions[J]. Journal of Propulsion Technology, 2016, 37(8): 1455-1460 (in Chinese).
[19] ZUCROW M J, HOFFMAN J D. Gas dynamics Vol.2: Multidimensional flow[M]. New York: John Wiley and Sons, Inc. Press, 1977: 112-266.
[20] BERNBARD H A. Design of supersonic inlets by a computer program incorporating the method of characteristics: NASA TN D-4960[R]. Washington, D.C.: NASA, 1969.
[21] HE X Z, LE J L,WU Y C. Design of a curved cone derived waverider forebody: AIAA-2009-7423[R]. Reston: AIAA, 2009.
[22] TRENT T, DAVID V W. Performance analysis of hypersonic shape changing inlets derived from morphing streamline traced flowpaths: AIAA-2008-2635[R]. Reston: AIAA, 2008.
[23] HE X Z,ZHAO H Y,LE J L. Application of wall function boundary condition considering heat transfer and compressibility[J]. Acta Aerodynamic Sinica, 2006, 24(4): 1138-1144.
[24] 0.6米×0.6米跨声速风洞(FL-23)[EB/OL].[2016-08-22].http://www.cardc.cn/DevRead.Asp?Channelld=4&Classld=19&ld=7#. 0.6 m×0.6 m transonic wind tunnel (FL-23)[EB/OL]. [2016-08-22].http://www.cardc.cn/DevRead.Asp?Channelld=4&Classld=19&ld=7# (in Chinese). |