[1] SMITH A M O, GAMBERONI N. Transition, pressure gradient, and stability theory:ES-26388[R]. Long Beach:Douglas Aircraft Company, 1956.
[2] ABU-GHANNAM B J, SHAW R. Natural transition of boundary layers-The effects of turbulence, pressure gradient, and flow history[J]. Journal of Mechanical Engineering Science, 1980, 22(5):213-228.
[3] WILCOX D C. Simulation of transition with a two-equation turbulence model[J]. AIAA Journal, 1994, 32(2):247-255.
[4] WILCOX D C. Turbulence modeling for CFD[M]. La Canada, CA:DCW Industries, 1993.
[5] MENTER F R, ESCH T, KUBACKI S. Transition modeling based on local variables[C]//Proceedings of 5th International Symposium on Engineering Turbulence Modelling and Measurements. Mallorca:Elsevier, 2002:555-564.
[6] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables-Part I:Model formulation[J]. Journal of Turbomchinery, 2006, 128(3):413-422.
[7] LANGTRY R B, MENTER F R, LIKKI S R, et al. A correlation-based transition model using local variables-Part Ⅱ:Test cases and industrial applications[J]. Journal of Turbomachinery, 2006, 128(3):423-434.
[8] LANGTRY R B. A correlation-based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart:Universität Stuttgart, 2006.
[9] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[10] 孟德虹, 张玉伦, 王光学, 等. γ-Reθt转捩模型在二维低速问题中的应用[J]. 航空学报, 2011, 32(5):792-801. MENG D H, ZHANG Y L, WANG G X, et al. Application of γ-Reθt transition model to two-dimensional low speed flows[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):792-801(in Chinese).
[11] 王刚, 刘毅, 王光秋, 等. 采用γ-Reθt模型的转捩流动计算分析[J]. 航空学报, 2014, 35(1):70-79. WANG G, LIU Y, WANG G Q, et al. Transitional flow simulation based on γ-Reθt transition model[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):70-79(in Chinese).
[12] VAN INGEN J L. A suggested semi-emprical method for the calculation of the boundary layer transition region[D]. Delft:Delft University of Technology, 1956.
[13] GLEYZES C, COUSTEIX J, BONNET J L. A calculation method of leading edge separation bubbles[M]. CEBECI T, ed. Numerical and Physical Aspects of Aerodynamic Flows Ⅱ. New York:Springer-Verlag, 1983:173-192.
[14] DRELA M, GILES M B. Viscous-inviscid analysis of transonic and low-Reynolds number airfoils[J]. AIAA Journal, 1987, 25(10):1347-1355.
[15] FALKNER V M, SKAN S W. Some approximate solutions of the boundary layer equations[J]. Philosophical Magazine, 1931(12):865-896.
[16] 章梓雄, 董曾南. 粘性流体力学[M]. 北京:清华大学出版社, 1998:129-134. ZHANG Z X, DONG Z N. Viscous fluid dynamics[M]. Beijing:Tsinghua University Press, 1998:129-134(in Chinese).
[17] CODER J G, MAUGHMER M D. A CFD-compatible transition model using an amplification factor transport equation:AIAA-2013-0253[R]. Reston:AIAA, 2013.
[18] GLEYZES C, COUSTEIX J, BONNET J L. Theoretical and experimental study of low Reynolds number transitional separation bubbles[C]//Conference on Low Reynolds Number Airfoil Aerodynamics. Notre Dame, IN:University of Notre Dame, 1985.
[19] MACK L M. Transition and laminar instability:NASA CR-153203[R]. Washington, D.C.:NASA, 1977.
[20] SOMERS D M. Design and experimental results for the S809 airfoil:NREL/SR-440-6918[R]. Pennsylvania:National Renewable Energy Laboratory, 1997.
[21] BENINI E, PONZA R. Laminar to turbulent boundary layer transition investigation on a supercritical airfoil using the γ-θ transitional model:AIAA-2010-4289[R]. Reston:AIAA, 2010.
[22] SOBIECZKY H. DLR-F5:Test wing for CFD and applied aerodynamics:AGARD FDP AR 303[R]. G ttingen:DLR German Aerospace Research Establishment, 1994. |