[1] BENEDICT B L. Rationale for need of in-orbit servicing capabilities for GEO spacecraft: AIAA-2013-5444[R]. Reston: AIAA, 2013.
[2] TANAKA H, YAMAMOTO N, YAIRI T, et al. Reconfigurable cellular satellites maintained by space robots[J]. Journal of Robotics and Mechatronics, 2006, 18(3): 356-364.
[3] TANAKA H, YAMAMOTO N, YAIRI T, et al. Precise assembly by autonomous space robot using skill acquisition learning[C]//Proceedings of The 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Munich: European Space Agency, 2005, 609-616.
[4] JAEGER T, MIRCZAK W. Satlets-the building blocks of future satellites-and which mold do you use: AIAA-2013-5485[R]. Reston: AIAA, 2013.
[5] JOHNSON L K, HOLLMAN J, MCCLELLAN J, et al. Utilizing CubeSat architecture and innovative low-complexity devices to repurpose decommissioned apertures for RF communications: AIAA-2013-5487[R]. Reston: AIAA, 2013.
[6] WEISE J, BRIEB K, ADOMEIT A, et al. An intelligent building blocks concept for on-orbit-satellite servicing[C]//International Symposium on Artificial Intelligence, Robotics and Automation in Space. Turin: European Space Agency, 2012.
[7] GOELLER M, OBERLAENDER J, UHL K, et al. Modular robots for on-orbit satellite servicing[C]//Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ: IEEE Press, 2012: 2018-2023.
[8] 温卓漫, 王延杰, 初广丽, 等. 空间站机械臂位姿测量中合作靶标的快速识别[J]. 航空学报, 2015, 36(4): 1330-1338. WEN Z M, WANG Y J, CHU G L, et al. Fast recognition of cooperative target used for position and orientation measurement of space station's robot arm[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1330-1338 (in Chinese).
[9] 王明, 黄攀峰, 孟中杰, 等. 空间机器人抓捕目标后姿态接管控制[J]. 航空学报, 2015, 36(9): 3165-3175. WANG M, HUANG P F, MENG Z J, et al. Attitude takeover control after capture of a target by a space robot[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 3165-3175 (in Chinese).
[10] BORDIGNON K A, DURHAM W C. Null-space augmented solutions to constrained control allocation problems: AIAA-1995-3209-CP[R]. Reston: AIAA, 1995.
[11] BORDIGNON K A. Constrained control allocation for systems with redundant control effectors[D]. Virginia: Virginia Polytechnic Institute and State University, 1996: 101-117.
[12] 张世杰, 赵亚飞, 陈闽, 等. 过驱动轮控卫星的动态控制分配方法[J]. 航空学报, 2011, 32(7): 1260-1268. ZHANG S J, ZHAO Y F, CHEN M, et al. Dynamic control allocation for overactuated satellite with redundant reaction wheels[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1260-1268 (in Chinese).
[13] DURHAM W C. Constrained control allocation[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(4): 717-725.
[14] DURHAM W C. Constrained control allocation: Three-moment problem[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(2): 330-336.
[15] HARKEGARD O. Dynamic control allocation using constrained quadratic programming[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6): 1028-1034.
[16] KORSAH G A, STENTZ A, DIAS M B. A comprehensive taxonomy for multi-robot task allocation[J]. The International Journal of Robotics Research, 2013, 32(12): 1495-1512.
[17] GERKEY B P, MATARIC M J. A formal analysis and taxonomy of task allocation in multi-robot systems[J]. The International Journal of Robotics Research, 2004, 23(9): 939-954.
[18] CHOI H L, BRUNET L, HOW J P. Consensus-based decentralized auctions for robust task allocation[J]. IEEE Transactions on Robotics, 2009, 25(4): 912-926.
[19] REDDING J, UNDURTI A, CHOI H L, et al. An intelligent cooperative control architecture[C]//American Control Conference. Piscataway, NJ: IEEE Press, 2010: 57-62.
[20] 柳林, 季秀才, 郑志强. 基于市场法及能力分类的多机器人任务分配方法[J]. 机器人, 2006, 28(3): 337-343. LIU L, JI X C, ZHENG Z Q. Multi-robot task allocation based on market and capability classification[J]. Robot, 2006, 28(3): 337-343 (in Chinese).
[21] 张兵, 吴宏鑫. 单向执行器系统配置的完整性[J]. 自动化学报, 2000, 26(3): 392-396. ZHANG B, WU H X. Complete configuration of unidirectional actuator system[J]. Acta Automatica Sinica, 2000, 26(3): 392-396 (in Chinese).
[22] LEENA S, MATTHEW F, SAGAR B, et al. On the phoenix ADCS-M3D architecture: AIAA-2013-5535[R]. Reston: AIAA, 2013. |