[1] Berthelot J M. Composite materials: mechanical behavior and structural analysis[M]. New York: Springer, 1999: 27-342.
[2] Kalidindi S R, Abusafieh A. Longitudinal and transverse moduli and strengths of low angle 3D braided composites[J]. Journal of Composite Materials, 1996, 30(8): 885-905.
[3] Babuška I. Solution of interface problems by homogenization: Parts I and II[J]. SIAM Journal on Mathmatical Analysis, 1976, 7: 603-645.
[4] Benssousan A, Lions J L. Asymptotic analysis for periodic structures[M]. Amsterdam: Elsevier, 1978.
[5] Strouboulis T, Babuška I, Copps K. The generalized finite element method: an example of its implementation and illustration of its performance[J]. International Journal for Numerical Methods in Engineering, 2000, 47(8): 1401-1417.
[6] Babuška I, Osborn J. Generalized finite element methods: their performance and their relation to mixed methods[J]. SIAM Journal on Numerical Analysis, 1983, 20: 510-536.
[7] Hou T, Wu X. A multiscale finite element method for elliptic problems in composite materials and porous media[J]. Journal of Computational Physics, 1997, 134(1):169-189.
[8] Hou T, Wu X, Cai Z. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients[J]. Mathematics of Computation, 1999, 68(227): 913-943.
[9] Engquis W E B. The heterogeneous multiscale methods[J]. Communication in Mathematical Sciences, 2003,1(1): 87-132.
[10] Engquist W E B, Li X T, Ren W Q, et al. Heterogeneous multiscale methods: a review[J]. Communications in Computational Physics, 2007, 2(3): 367-450.
[11] Xing Y F, Yang Y. An eigenelement method of periodical composite structures[J]. Composite Structures, 2011, 93: 502-512.
[12] Xing Y F, Yang Y, Wang X M. A multiscale eigenelement method and its application to periodical composite structures[J]. Composite Structures, 2010, 92: 2265-2275.
[13] Oleinik O, Shamaev A V, Yosifian G A. Mathematical problems in elasticity and homogenization[M]. Amsterdam: Elsevier, 1992.
[14] Guedes J M, Kikuchi N. Pre and post processing for materials based on the homogenization method with adaptive finite element methods[J]. Computer Methods in Applied Mechanics and Engineering, 1990, 83: 143-198.
[15] Hassani B, Hinton E. A review of homogenization and topology optimization I—homogenization theory for media with periodic structure[J]. Computers and Structures, 1998, 69: 707-717.
[16] Takano N, Zako M, Ishizono M. Multi-scale computational method for elastic bodies with global and local heterogeneity[J]. Journal of Computer-Aided Material Design, 2000, 7(2): 111-132.
[17] Fish J, Yuan Z. Multiscale enrichment based on partition of unity[J]. International Journal for Numerical Methods in Engineering, 2005, 62(10): 1341-1359.
[18] Bourgat J F. Numerical experiments of the homogenization method for operators with periodic coefficients[J]. Lecture Notes in Mathematics, 1977, 707: 330-356.
[19] Chung P W, Tamma K K, Namburu R R. Asymptotic expansion homogenization for heterogeneous media: computational issues and applications[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(9): 1291-1301.
[20] Chen C M, Kikuchi N O, Rostam F A. An enhanced asymptotic homogenization method of the static and dynamics of elastic composite laminates[J]. Computers and Structures, 2002, 82(4-5): 373-382.
[21] Kalamkarov A L, Andrianov I V, Danishevs'kyy V V. Asymptotic homogenization of composite materials and structures[J]. Applied Mechanics Review, 2009, 62(3): 030802-1-20.
[22] Xing Y F, Chen L. Accuracy of multiscale asymptotic expansion method[J]. Composite Structures, 2014, 112: 38-43. |