[1] Floros M W, Johnson W. Performance analysis of the slowed-rotor compound helicopter configuration[C]//American Helicopter Society 4th Decennial Specialists' Conference on Aeromechanics. Alexandria:AHS, 2004:1-19.
[2] Yeo H, Johnson W. Aeromechanics analysis of a heavy lift slowed-rotor compound helicopter[J]. Journal of Aircraft, 2007, 44(2):501-508.
[3] Nagaraj V T, Chopra I. Dynamics considerations for high speed flight of compound helicopters[C]//American Helicopter Society 58th Annual Forum. Alexandria:AHS, 2002:1-14.
[4] Yeo H, Johnson W. Optimum design of a compound helicopter[J]. Journal of Aircraft, 2009, 46(4):1210-1221.
[5] Berry B, Chopra I. Performance and vibratory load measurements of a slowed-rotor at high advance ratios[C]//American Helicopter Society 68th Annual Forum. Alexandria:AHS, 2012:1-13.
[6] Leishman J G. Development of the autogiro:a technical perspective[J]. Journal of Aircraft, 2004, 41(4):765-781.
[7] Kim H Y, Sheen D J, Park S O. Numerical simulation of autorotation in forward flight[J]. Journal of Aircraft, 2009, 46(5):1642-1648.
[8] Rezgui D, Lowenberg M H, Bunniss P C. Experimental and numerical analysis of the stability of an autogiro teetering rotor[C]//Americian Helicopter Society 64th Annual Forum. Alexandria:AHS, 2008:1-15.
[9] Rigsby J, Prasad J. Performance and trim analysis of lightly loaded rotors in high advance ratio autorotation[C]//American Helicopter Society Aeromechanics Specialists' Conference. Alexandria:AHS, 2010:1-23.
[10] Niemi E E, Gowda B V. Gyroplane rotor aerodynamics revisited-blade flapping and RPM variation in zero-g flight[C]//49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011:1-17.
[11] Wang H J, Gao Z. Aerodynamic virtue and steady rotary speed of autorotating rotor[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(4):337-339(in Chinese).王焕瑾,高正.自转旋翼的气动优势和稳定转速[J].航空学报, 2001, 22(4):337-339.
[12] Zhu Q H. Research on key technologies of gyroplane preliminary design[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007(in Chinese).朱清华.自转旋翼飞行器总体设计关键技术研究[D].南京:南京航空航天大学, 2007.
[13] Cui Z, Han D, Li J B. Study on aerodynamic characteristics of auto-rotating rotors with Gurney flaps[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1791-1799(in Chinese).崔钊,韩东,李建波.加装格尼襟翼的自转旋翼气动特性研究[J].航空学报, 2012, 33(10):1791-1799.
[14] Ji L Q, Zhu Q H, Cui Z, et al. Research on aerodynamic characteristics of autorotating coaxial twin-rotor[J]. Journal of Aerospace Power, 2012, 27(9):2013-2020(in Chinese).姬乐强,朱清华,崔钊,等.共轴双旋翼自转气动特性[J].航空动力学报, 2012, 27(9):2013-2020.
[15] Wang J C, Li J B, Han D. Theoretical modeling technology for gyroplane flight performance[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3244-3253(in Chinese).王俊超,李建波,韩东.自转旋翼机飞行性能理论建模技术[J].航空学报, 2014, 35(12):3244-3253.
[16] Wang J C, Li J B. Effects of wing on autogyro longitudinal stability[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):151-160(in Chinese).王俊超,李建波.机翼对自转旋翼机纵向稳定性的影响[J].航空学报, 2014, 35(1):151-160.
[17] Kini S, Conlisk A T. Nature of locally steady rotor wakes[J]. Journal of Aircraft, 2002, 39(5):750-758.
[18] Ananthan S, Leishman J G. Transient helicopter rotor wakes in response to time-dependent blade pitch inputs[J].Journal of Aircraft, 2004, 41(5):1025-1041.
[19] Fletcher T M, Brown R E. Helicopter tail rotor thrust and main rotor wake coupling in crosswind flight[J]. Journal of Aircraft, 2010, 47(6):2136-2148.
[20] Yoo S J, Jeong M S, Lee I. Wake effects of free-wake model on aeroelastic behavior of hovering rotors[J]. Journal of Aircraft, 2011, 48(4):1184-1192.
[21] Tan J F, Wang H W. Highly efficient unsteady panel time-marching free wake for aerodynamics of rotorcraft[J].Journal of Aircraft, 2014, 51(1):54-61.
[22] Bagai A, Leishman J G. Rotor free wake modeling using pseudo implicit technique including comparisons with experimental data[J]. Journal of the American Helicopter Society, 1995, 40(3):29-41. |