航空学报 > 2015, Vol. 36 Issue (1): 245-260   doi: 10.7527/S1000-6893.2014.0238

吸气式高超声速飞行器机体推进一体化技术研究进展

吴颖川, 贺元元, 贺伟, 乐嘉陵   

  1. 中国空气动力研究与发展中心 超高速空气动力研究所 高超声速冲压发动机技术重点实验室, 绵阳 621000
  • 收稿日期:2014-07-25 修回日期:2014-10-13 出版日期:2015-01-15 发布日期:2014-10-14
  • 通讯作者: 吴颖川,Tel.: 0816-2463303 E-mail: wyclwx2007@126.com E-mail:wyclwx2007@126.com
  • 作者简介:吴颖川 男,博士,研究员。主要研究方向: 高超声速空气动力学。 Tel: 0816-2463303 E-mail: wyclwx2007@126.com;贺元元 女,博士,副研究员。主要研究方向: 高超声速空气动力学。 Tel: 0816-2467307 E-mail: hyy63713@126.com;贺伟 男,博士,研究员。主要研究方向: 高超声速空气动力学。 Tel: 0816-2463303 E-mail: hewei@cardc.cn;乐嘉陵 男,中国工程院院士。主要研究方向: 高超声速空气动力学。 Tel: 0816-2466381 E-mail: lejl123@cardc.cn
  • 基金资助:

    国家自然科学基金(90716017, 90916012, 91216303)

Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle

WU Yingchuan, HE Yuanyuan, HE Wei, LE Jialing   

  1. Science and Technology on Scramjet Laboratory, Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China
  • Received:2014-07-25 Revised:2014-10-13 Online:2015-01-15 Published:2014-10-14
  • Supported by:

    National Natural Science Foundation of China (90716017, 90916012, 91216303)

摘要:

吸气式高超声速一体化飞行器最显著的特点是子系统之间的耦合较其他类型飞行器更加强烈,这使得其设计具有挑战性。所有的子系统之间部件相互干涉,包括:气动、推进、控制、结构、装载和热防护等,特别是机体与超燃冲压发动机之间的耦合最为突出。飞行器的前体和后体下壁面既是主要的气动型面,又是超燃冲压发动机进气道外压缩型面和尾喷管的膨胀型面,在产生推力的同时也产生升力和俯仰力矩。机体与发动机的强耦合作用对飞行器的推力、升力、阻力、俯仰力矩、气动加热、机身冷却、稳定性和控制特性有直接的影响。本文介绍了国内外机体推进一体化技术的研究进展,重点介绍了中国空气动力研究与发展中心(CARDC)的相关研究工作,包括:密切曲锥曲面乘波进气道和基于双激波轴对称基准流场内转式进气道设计方法、独创的大尺度脉冲式燃烧加热风洞一体化飞行器带动力试验技术和高超声速内外流耦合数值模拟技术等。对高速飞行中激波边界层相互干扰、流动分离机理、可压缩湍流转捩及其控制、超燃冲压发动机燃烧流动机理等相关基础问题也进行了研究,强调了对高效高精度计算方法的迫切需求。

关键词: 高超声速飞行器, 超燃冲压发动机, 机体推进一体化, 乘波体, 燃烧加热风洞, 湍流燃烧, 转捩

Abstract:

Air-breathing hypersonic vehicle is highly integrated making its design challenging. All vehicle parts and functions interact including aerodynamics, propulsion, control, structure, tank and thermal protection, especially for airframe and scramjet engine coupling. The lower wall of the aircraft forebody and afterbody is either compression part of the engine inlet or expansion part of the engine nozzle and it produces lift and pitching moment as well as thrust. The strong coupling of the airframe and engine has direct influence to the thrust, lift, drag, pitching moment, aerodynamic heating, airframe cooling, stability and control characteristics of the vehicle. The research developments of airframe-propulsion integration technology are introduced and the related works of China Aerodynamics Research & Development Center (CARDC) are emphasized. These works included osculating curved cone waverider inlet design, double shockwave axissymetric flow field-based inward turning inlet design, airframe-propulsion integrated vehicle tests in pulsed combustion heated hypersonic high-temperature wind tunnels and hypersonic large-scale parallel numerical simulation platform (AHL3D). The related fundamental researches of hypersonic shock-boundary layer interaction, compressible turbulent transition of flow separation mechanism and its control, scramjet combustion study on flow mechanism and other related basic issues are introduced. The urgent need of efficient high-precision calculation method is emphasized.

Key words: hypersonic vehicle, scramjet, airframe-propulsion integration, waverider, combustion heated wind tunnel, turbulence combustion, transition

中图分类号: