[1] Boyce M P. Gas turbine engineering handbook[M]. Waltham: Elasevier, 2012: 6-11.[2] Pisano A P.Harsh environment wireless MEMS sensors for energy & power. Berkeley:University of California-Berkeley,2009.[3] Zheng H F, Tang H. Establishment and research on mathematical model of isothermal combustion process inside the turbine[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1400-1405. (in Chinese) 郑海飞, 唐豪. 涡轮内等温燃烧数学模型的建立与研究[J]. 航空学报, 2012, 33(8): 1400-1405.[4] Luo Z H, Li J, Yang P, et al. Characteristics of casing static pressure during compressor stall[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2092-2099. (in Chinese) 罗志煌, 李军, 杨朴, 等.压气机失速过程中的壁面压力分布特征[J]. 航空学报, 2013, 34(9): 2092-2099.[5] Wang A, Xiao H, Wang J, et al. Self-calibrated interferometric-intensity-based optical fiber sensors[J]. Journal of Lightwave Technology, 2001, 19(10): 1495-1501.[6] Willsch M, Bosselmann T, Flohr P, et al. Design of fiber optical high temperature sensors for gas turbine monitoring//20th International Conference on Optical Fibre Sensors.Washington, D.C.: SPIE, 2009: 75037R1-75037R4.[7] Palmer M E, Davis M A, Fielder R S. Commercial demonstration of un-cooled pressure sensor for gas-turbine engine monitoring//ASME Turbo Expo 2007: Power for Land, Sea, and Air. New York: American Society of Mechanical Engineers, 2007: 865-874.[8] Wang J, Dong B, Lally E, et al. Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers[J]. Optics Letters, 2010, 35(5): 619-621.[9] Riza N A, Sheikh M. All-silicon carbide hybrid wireless-wired optics temperature sensor: Turbine tests and distributed fiber sensor network design[J]. Proceedings of SPIE, 2009, 7356: 73560O-1-73560O-5.[10] Riza N A, Sheikh M, Perez F. Hybrid wireless-wired optical sensor for extreme temperature measurement in next generation energy efficient gas turbines[J]. Journal of Engineering for Gas Turbines & Power, 2010, 132(5): 051601-1-051601-11.[11] Wild G. Optical fiber bragg grating sensors applied to gas turbineengine instrumentation and monitoring//Sensors Applications Symposium, 2013: 188-192.[12] Lee B. High-density fiber optical sensor and instrumentation for gas turbine operation condition monitoring[J]. Journal of Sensors, 2013.(in press)[13] Thompson H A. Wireless sensor research at the rolls-royce control and systems university technology centre//1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology.New York: IEEE, 2009: 571-576.[14] Thompson H A. Wireless and Internet communications technologies for monitoring and control[J]. Control Engineering Practice, 2004, 12(6): 781-791.[15] Lynch J P, Law K H, Kiremidjian A S, et al. Validation of a wireless modular monitoring system for structures//SPIE's 9th Annual International Symposium on Smart Structures and Materials. Washington, D.C.: SPIE, 2002: 124-135.[16] Bates J B, Gruzalski G R, Luck C F. Rechargeable solid state lithium microbatteries//Proceedings of IEEE Micro Electro Mechanical Systems: An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. New York: IEEE, 1993: 82-86.[17] Lee S H, Jee S H, Yoon Y S. Study on super stable all-solid-state battery at high temperature//PRICM-8: Proceedings of the 8th Pacific Rim International Conference on Advanced Materials and Processing. Hawaii: John Wiley & Sons, 2013: 197.[18] Wang Z J, Du J L, Li Z L, et al. Sol-gel synthesis of Co-doped LiMn2O4 with improved high-rate properties for high-temperature lithium batteries[J]. Ceramics International, 2014, 40(2): 3527-3531.[19] Toriyama T, Yajima M, Sugiyama S. Thermoelectric micro power generator utilizing self-standing polysilicon-metal thermopile//The 14th IEEE International Conference on Micro Electro Mechanical Systems. New York: IEEE, 2001: 562-565.[20] Sato N, Ishii H, Urano M, et al. Novel MEMS power generator with integrated thermoelectric and vibrational devices//The 13th International Conference on Solid-State Sensors, Actuators and Microsystems.New York: IEEE, 2005, 1: 295-298.[21] Lai Y J, Li W C, Lin C M, et al. High-temperature stable piezoelectric aluminum nitride energy harvesters utilizing elastically supported diaphragms//The 17th International Conference on Solid-State Sensors,Actuators and Microsystems (TRANSDUCER-S&EUROSENSORS XXVII). New York: IEEE, 2013: 2268-2271.[22] Fonseca M A, English J M, Von Arx M, et al. Wireless micromachined ceramic pressure sensor for high-temperature applications[J]. Journal of Microelectromechanical Systems, 2002, 11(4): 337-343.[23] Mehregany M, Zorman C A, Rajan N, et al. Silicon carbide MEMS for harsh environments[J]. Proceedings of the IEEE, 1998, 86(8): 1594-1609.[24] Tong L, Mehregany M, Matus L G. Silicon carbide as a new micromechanics material//Solid-State Sensor and Actuator Workshop.New York: IEEE, 1992: 198-201.[25] Levinshtein M E, Rumyantsev S L, Shur M S,Properties of advanced semiconductor materials: GaN, AIN, InN, BN, SiC, SiGe[M]. Hawaii: John Wiley & Sons, 2001: 5.1-5.6.[26] Senesky D G. Wide bandgapsemiconductors for sensing within extreme harsh environments[J]. ECS Transactions, 2013, 50(6): 233-238.[27] Neudeck P G. Silicon carbide technology[M]. 2006: 5.1-5.34.[28] Okojie R S. Stable 600℃ silicon carbide MEMS pressure transducers[J]. Proceedings of SPIE, 2007, 6555: 65550V-1-65550V-11.[29] Young D J, Du J, Zorman C A, et al. High-temperature single-crystal 3C-SiC capacitive pressure sensor[J]. IEEE Sensors Journal, 2004, 4(4): 464-470.[30] Wu C H, Zorman C A, Mehregany M. Fabrication and testing of bulk micromachined silicon carbide piezoresistive pressure sensors for high temperature applications[J]. IEEE Sensors Journal, 2006, 6(2): 316-324.[31] Chen L, Mehregany M. A silicon carbide capacitive pressure sensor for in-cylinder pressure measurement[J]. Sensors and Actuators A: Physical, 2008, 145-146: 2-8.[32] Simsek E, Pecholt B, Everson C, et al. High-pressure deflection behavior of laser micromachined bulk 6H-SiC MEMS sensor diaphragms[J]. Sensors and Actuators A: Physical, 2010, 162(1): 29-35.[33] Wieczorek G, Schellin B, Obermeier E, et al. SiC based pressure sensor for high-temperature environments//IEEE Sensors 2007 Conference. New York: IEEE, 2007: 748-751.[34] Pakula L S, Yang H, Pham H T M, et al. Fabrication of a CMOS compatible pressure sensor for harsh environments[J]. Journal of Micromechanics and Microengineering, 2004, 14(11): 1478-1483.[35] Akiyama T, Briand D, de Rooij N F. Piezoresistive n-type 4H-SiC pressure sensor with membrane formed by mechanical milling//IEEE Sensors 2011. New York: IEEE, 2011: 222-225.[36] Okojie R S, Beheim G M, Saad G J, et al. Characteristics of a hermetic 6H-SiC pressure sensor at 600℃//AIAA Space 2001 Conference and Exposition. Reston: AIAA, 2001: 28-30.[37] Myers D R, Chen L, Wijesundara M B J, et al. Silicon carbide resonant tuning fork for microsensing applications in high-temperature and high G-shock environments[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2009, 8(2): 021116-1-021116-7.[38] Riza N A, Sheikh M, Perez F. Hybrid wireless-wired optical sensor for extreme temperature measurement in next generation energy efficient gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(5): 051601-1-051601-11.[39] Tang W, Zheng B, Liu L, et al. Complementary metal-oxide semiconductor-compatible silicon carbide pressure sensors based on bulk micromachining[J]. Micro & Nano Letters, 2011, 6(4): 265-268.[40] Yan Z L. Research on apiezoresistivesilicon carbide pressure sensor for high temperature applications. Beijing: Tsinghua University, 2011.(in Chinese) 严子林. 碳化硅高温压力传感器设计与工艺实验研究. 北京: 清华大学, 2011.[41] Neudeck P, Krasowski M, Prokop N. Assessment of durable SiC JFET technology for +600℃ to -125℃ integrated circuit operation[J]. ECS Transactions, 2011, 41(8): 163-176.[42] Soong C W, Garverick S L, Fu X A, et al. A fully monolithic 6H-SiC JFET-based transimpedanceamplifier for high-temperature capacitive sensing[J]. IEEE Transactionson Electron Devices,2013,60(12): 4146-4151.[43] Wang R, Ko W H, Young D J. Silicon-carbide MESFET-based 400℃ MEMS sensing and data telemetry[J]. IEEE Sensors Journal, 2005, 5(6): 1389-1394.[44] Maralani A, Mazzola M S, Pisano A P.Vertical channel silicon carbide JFETs based operational amplifiers[J].Materials Science Forum, 2013, 740-742: 1069-1072.[45] Maralani A, Mazzola M S. The design of an operational amplifier using silicon carbide JFETs[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59(2): 255-265.[46] Yang J. A silicon carbide wireless temperature sensing system for high temperature applications[J]. Sensors, 2013, 13(2): 1884-1901.[47] Yang J. A harsh environment wireless pressure sensing solution utilizing high temperature electronics[J]. Sensors, 2013, 13(3): 2719-2734.[48] Wijesundara M, Azevedo R. Silicon carbide microsystems for harsh environments[M]. 2011: 224-226.[49] DeHennis A, Wise K D. A double-sided single-chip wireless pressure sensor//The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems. New York: IEEE, 2002: 252-255.[50] Sardini E, Serpelloni M. Wireless measurement electronics for passive temperature sensor[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(9): 2354-2361.[51] Tan Q, Kang H, Xiong J, et al. A wireless passive pressure microsensorfabricated in HTCC MEMS technology for harsh environments[J]. Sensors, 2013, 13(8): 9896-9908.[52] Zhang H, Hong Y, Ge B, et al. A novel readout system for wireless passive pressure sensors[J]. Photonic Sensors, 2014, 4(1): 70-76.[53] Chevalerias O, O'Donnell T, Power D, et al. Inductive telemetry of multiple sensor modules[J]. IEEE Pervasive Computing, 2005, 4(1): 46-52.[54] Birdsell E D, Park J W, Allen M G. Wireless ceramic sensors operating in high temperature environments//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2004: 1-11.[55] Birdsell E, Allen M G. Wireless chemical sensors for high temperature environments//Solid-State Sensor, Actuator, and Microsystems Workshop, 2006: 212-215.[56] Pereira da Cunha M, Lad R J, Davulis P, et al. Wireless acoustic wave sensors and systems for harsh environment applications//2011 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet). New York: IEEE, 2011: 41-44.[57] Lee K, Wang W, Kim T, et al. A novel 440 MHz wireless SAW microsensor integrated with pressure-temperature sensors and ID tag [J]. Journal of Micromechanics and Microengineering, 2007, 17(3): 515-523.[58] Elmazria O, Aubert T. Wireless SAW sensor for high temperature applications: material point of view[J]. Proceedings of SPIE, 2011,8066: 806602-1-806602-10.[59] Canabal A, Davulis P M, Pollard T, et al. Multi-sensor wireless interrogation of SAW resonators at high temperatures//2010 IEEE Ultrasonics Symposium (IUS).New York: IEEE, 2010: 265-268.[60] Lin C M, Chen Y Y, Felmetsger V V, et al. Surface acoustic wave devices on AlN/3C-SiC/Si multilayer structures [J]. Journal of Micromechanics and Microengineering, 2013, 23(2): 025019-1-025019-8.[61] Greve D W, Chin T L, Zheng P, et al. Surface acoustic wave devices for harsh environment wireless sensing[J]. Sensors, 2013, 13(6): 6910-6935.[62] Bao K, Chen D, Shi Q, et al. A readout circuit for wireless passive resonant-circuit sensors//IEEE Sensors 2013. New York: IEEE, 2013: 1-4.[63] Li P, Xie H, Wen Y, et al. A SAW passive wireless sensor system for monitoring temperature of an electric cord connector at long distance//IEEE Sensors 2011. New York: IEEE, 2011: 1831-1834.[64] Ren X, Ebadi S, Cheng H, et al. Wireless resonant frequency detection of SiCN ceramic resonator for sensor applications//2011 IEEE International Symposium on Antennas and Propagation (APSURSI). New York: IEEE, 2011: 1856-1859.[65] Ren X, Ebadi S, Chen Y, et al. Characterization of SiCNceramic material dielectric properties at high temperatures for harsh environment sensing applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(2): 960-971.[66] Li Y, Yu Y X, San H S, et al. Wireless passive polymer-derived SiCN ceramic sensor with integrated resonator/antenna[J].Applied Physics Letters, 2013, 103(16): 163505-1-163505-5. |