[1] Jiang G S, Shu C W. Efficient implementation of weighted eno schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228.
[2] Deng X G, Zhang H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1): 22-44.
[3] Deng X G, Mao M L, Jiang Y, et al. New high-order hybrid cell-edge and cell-node weighted compact nonlinear schemes, AIAA-2011-3857.Reston: AIAA, 2011.
[4] Deng X G, Jiang Y, Mao M L, et al. Developing hybrid cell-edge and cell-node dissipative compact scheme for complex geometry flows//The Ninth Asian Computational Fluid Dynamics Conference, 2012: 1-11.
[5] Deng X G, Jiang Y, Mao M L, et al. Developing hybrid cell-edge and cell-node dissipative compact scheme for complex geometry flows[J]. Science China Technological Sciences, 2013, 56(10): 2361-2369.
[6] Zhang L P, Liu W, He L X, et al. A class of hybrid dg/fv methods for conservation laws I: basic formulation and one-dimensional systems[J]. Journal of Computational Physics, 2012, 231(4): 1081-1103.
[7] Deng X G, Mao M L, Tu G H, et al. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2011, 230(4): 1100-1115.
[8] Deng X G, Min Y B, Mao M L, et al. Further studies on geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2013, 239: 90-111.
[9] Jiang Y, Deng X G, Mao M L, et al. Large eddy simulation based on seventh-order dissipative compact scheme //The Ninth Asian Computational Fluid Dynamics Conference, 2012: 1-9.
[10] Jiang Y, Mao M L, Deng X G, et al. Effect of surface conservation law on large eddy simulation based on seventh-order dissipative compact scheme[J]. Applied Mechanics and Materials, 2013, 419: 30-37.
[11] Rizzetta D P, Visbal M R, Blaisdell G A. A time-implicit high-order compact differencing and filtering scheme for large-eddy simulation[J]. International Journal for Numerical Methods in Fluids, 2003, 42(6): 665-693.
[12] Ekaterinaris J A. Implicit, high-resolution, compact schemes for gas dynamics and aeroacoustics[J]. Journal of Computational Physics, 1999, 156(2): 272-299.
[13] Parsani M, Abeele K V D, Lacor C, et al. Implicit LU-SGS algorithm for high-order methods on unstructured grid with p-multigrid strategy for solving the steady navier-stokes equations[J]. Journal of Computational Physics, 2010, 229(3): 828-850.
[14] Zhang Y F. Investigations of convergence acceleration and complex flow numerical simulation for high-order accurate scheme (wcns). Mianyang: China Aerodynamics Research and Development Center, 2007.(in Chinese) 张毅锋. 高精度格式(WCNS)加速收敛和复杂流动数值模拟的应用研究. 绵阳: 中国空气动力研究与发展中心, 2007.
[15] Whitfield D L, Taylor L K. Discretized newton-relaxation solution of high resolution flux-difference split schemes, AIAA-1991-1539. Reston: AIAA, 1991.
[16] Buelow P E O, Venkateswaran S, Merkle C L. Stability and convergence analysis of implicit upwind schemes[J]. Computers & Fluids, 2001, 30(7-8): 961-988.
[17] Ezertas A A, Eyi S. Performances of numerical and analytical jacobians in flow and sensitivity analysis, AIAA-2009-4140.Reston: AIAA, 2009.
[18] Knoll D A, Keyes D E. Jacobian-free newton-krylov mehtods: a survey of approaches and applications[J]. Journal of Computational Physics, 2004, 193(2): 357-397.
[19] Cockburn B, Karniadakis G, Shu C W. Discontinuous galerkin methods: theory, computation and applications [M]. New York: Springer, 2000: 197-208.
[20] Persson P O, Peraire J. Newton-GMRES preconditioning for discontinuous galerkin discretizations of the Navier-Stokes equations[J]. SIAM Journal on Scientific Computing, 2008, 30(6): 2709-2733.
[21] Nejat A, Ollivier-Gooch C. Effect of discretization order on preconditioning and convergence of a high-order unstructured newton-gmres solver for the euler equations[J]. Journal of Computational Physics, 2008, 227(4): 2366-2386.
[22] Yoon S, Jameson A. Lower-upper symmetric gauss-seidel method for the euler and navier-stokes equations[J]. AIAA Journal, 1988, 26(9): 1025-1026.
[23] Yang X Q, Yang A M, Sun G. An efficient numerical method for coupling the rans equations with spalart-allmaras turbulence model equation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2007-2018.(in Chinese) 杨小权, 杨爱明, 孙刚. 一种强耦合Spalart-Allmaras湍流模型的RANS方程的高效数值计算方法[J]. 航空学报, 2013, 34(9): 2007-2018.
[24] Deng X G, Mao M L, Tu G H, et al. Extending weighted compact nonlinear schemes to complex grids with characteristic-based interface conditions[J]. AIAA Journal, 2010, 48(12): 2840-2851.
[25] Jiang Y, Deng X G, Mao M L, et al. Extending seventh-order hybrid cell-edge and cell-node dissipative compact scheme to complex grids//The 4th Asian Symposium on Computational Heat Transfer and Fluid Flow, 2013: 1-10.
[26] Leveque R J. Finite difference methods for ordinary and partial differential equations[M]. Seattle, Washington: SIAM, 2007: 69-110.
[27] Liu X. Research on high-order accurate weighted compact nonlinear scheme and their applications to complicated flows. Mianyang: China Aerodynamics Research and Development Center, 2004. (in Chinese) 刘昕. 高阶精度加权紧致非线性格式研究与其在复杂流动中的应用. 绵阳: 中国空气动力研究与发展中心, 2004.
[28] Berg B V D. Boundary Layer measurements on a two-dimensional wing with flap, NLR-TR-1979-009. Amsterdam, The Nethelands: National Aerospace Laboratory, 1979.
[29] Xu J, Liu Q H, Cai J S, et al. Drag prediction based on overset grids with implicit hole cutting technique[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 208-217.(in Chinese) 徐嘉, 刘秋洪, 蔡晋生, 等. 基于隐式嵌套重叠网格技术的阻力预测[J]. 航空学报, 2013, 34(2): 208-217. |