[1] Schwaniger A J. Trajectories in the Earth-Moon space with symmetrical free return properties[M]. Washington, D.C.: NASA, 1963.
[2] Berry R L. Launch window and translunar, lunar orbit, and transearth trajectory planning and control for the Apollo 11 lunar landing mission, AIAA-1970-0024[R]. Reston: AIAA, 1970.
[3] Jesick M, Ocampo C. Automated generation of symmetric lunar free-return trajectories[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(1): 98-106.
[4] Li J Y, Gong S, Baoyin H. Generation of multisegment lunar free-return trajectories[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(3): 765-775.
[5] Aldrin B. Cyclic trajectory concepts[C]//SAIC Presentation to the Interplanetary Rapid Transit Study Meeting. Pasadena: Jet Propulsion Laboratory, 1985.
[6] Friedlander A L, Niehoff J C, Byrnes D V, et al. Circulating transportation orbits between Earth and Mars, NASA7-918 and NASW-3622[R]. Washington, D.C.: NASA, 1986.
[7] Lo M W, Parker J S. Unstable resonant orbits near Earth and their applications in planetary missions, AIAA-2004-5304[R]. Reston: AIAA, 2004.
[8] Vaquero M, Howell K C. Design of transfer trajectories between resonant orbits in the Earth-Moon restricted problem[J]. Acta Astronautica, 2014, 94(1): 302-317.
[9] Poincaré H. Les méthodes nouvelles de la mécanique céleste: Méthodes de MM. Newcomb, Glydén, Lindstedt et Bohlin[M]. Paris: Gauthier-Villars et fils, 1893.
[10] Broucke R A. Periodic orbits in the restricted three-body problem with Earth-Moon masses[R]. Pasadena: California Institute of Technology, 1968.
[11] Henrard J. On Poincaré's second species solutions[J]. Celestial Mechanics, 1980, 21(1): 83-97.
[12] Perko L. Periodic orbits in the restricted three-body problem: existence and asymptotic approximation[J]. SIAM Journal on Applied Mathematics, 1974, 27(1): 200-237.
[13] Guillaume P. Linear analysis of one type of second species solutions[J]. Celestial Mechanics, 1975, 11(2): 213-254.
[14] Guillaume P. The restricted problem: an extension of Breakwell-Perko's matching theory[J]. Celestial Mechanics, 1975, 11(4): 449-467.
[15] Bruno A. On periodic flybys of the moon[J]. Celestial Mechanics, 1981, 24(3): 255-268.
[16] Font J, Nunes A, Simó C. Consecutive quasi-collisions in the planar circular RTBP[J]. Nonlinearity, 2002, 15(1): 115.
[17] Barrabés E, Gómez G. Three-dimensional p-q resonant orbits close to second species solutions[J]. Celestial Mechanics and Dynamical Astronomy, 2003, 85(2): 145-174.
[18] Casoliva J, Mondelo J M, Villac B F, et al. Two classes of cycler trajectories in the Earth-Moon system[J]. Journal of Guidance, Control, and Dynamics, 2010, 33 (5): 1623-1640.
[19] McConaghy T T, Yam C H, Landau D F, et al. Two synodic-period Earth-Mars cyclers with intermediate Earth encounter, AAS 03-509[R]. San Diego: AAS Publications Office, 2003.
[20] Russell R P, Ocampo C A. Systematic method for constructing Earth-Mars cyclers using free-return trajectories[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(3): 321-335.
[21] Russell R P, Ocampo C A. Global search for idealized free-return Earth-Mars cyclers[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(2): 194-208.
[22] McConaghy T T, Longuski J M. Analysis of a class of Earth-Mars cycler trajectories[J]. Journal of Spacecraft and Rockets, 2004, 41(4): 622-628.
[23] Szebehely V. Theory of orbits: the restricted problem of three bodies[M]. New York: Academic Press, 1967.
[24] Celletti A, Stefanelli L, Lega E, et al. Some results on the global dynamics of the regularized restricted three-body problem with dissipation[J]. Celestial Mechanics and Dynamical Astronomy, 2011, 109(3): 265-284.
[25] Pavlak T A. Trajectory design and orbit maintenance strategies in multi-body dynamical regimes[D]. Lafayette: Purdue University, 2013.
[26] Hénon M. Generating families in the restricted three-body problem[M]. Berlin: Springer, 1997.
[27] Edery A. Analytical expressions for the semimajor axis and eccentricity after a lunar gravity assist[R]. Lanham: a. i-solutions Inc., 2002. |