[1] Leishman J G. Rotorcraft aeromechanics: getting through the dip[J]. Journal of the American Helicopter Society, 2010, 55(1): 011001-1-011001-24.
[2] Wang S C, Xu G H. Progress of helicopter rotor aerodynamics[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2001, 33(3): 203-211. (in Chinese) 王适存, 徐国华. 直升机旋翼空气动力学的发展[J].南京航空航天大学学报, 2001, 33(3): 203-211.
[3] Yang H, Song W P, Han Z H, et al. Multi-objective and multi-constrained optimization design for a helicopter rotor airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1218-1226. (in Chinese) 杨慧, 宋文萍, 韩忠华, 等. 旋翼翼型多目标多约束气动优化设计[J]. 航空学报, 2012, 33(7): 1218-1226.
[4] Lee S W, Kwon O J. Aerodynamic shape optimization of rotor blades in hover using a unstructured meshes[C]//Proceedings of the 60th Annual Forum of AHS International, 2004, 1: 536-547.
[5] Wang B, Zhao Q J, Xu G H. Numerical optimization of helicopter rotor twist distribution in hover[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1163-1172. (in Chinese) 王博, 招启军, 徐国华. 悬停状态直升机桨叶扭转分布的优化数值计算[J].航空学报, 2012, 33(7): 1163-1172.
[6] Yu J, Paraschivoiu I, Saeed F. Iterative inverse design method based on streamline equations[J]. Journal of Aircraft, 2004, 41(4): 821-828.
[7] Liu X D, Yang X D. Inverse design for wing of multi-point aerodynamic based on adjoint method[J]. Aeronautical Computing Technique, 2012, 42(5): 60-64.(in Chinese) 刘晓冬, 杨旭东. 基于伴随方法的机翼多设计点气动反设计方法[J]. 航空计算技术, 2012, 42(5): 60-64.
[8] Garabedian P, Mcfadden G. Design of supercritical swept wings[J]. AIAA Journal, 1982, 20(3): 289-291.
[9] Kim H J, Rho O H. Aerodynamic design of transonic wings using the target pressure optimization approach[J]. Journal of Aircraft, 1998, 35(5): 671-677.
[10] Whyte P H. Use of CFD in helicopter aerodynamic design[J]. Canadian Aeronautics and Space Journal, 1988, 34(2): 92-101.
[11] Malone J B, Narramore J C. Airfoil design method using the N-S equations[J]. Journal of Aircraft, 1991, 28(3): 216-224.
[12] Hassan A A, Charles B D. Airfoil design for helicopter rotor blades-a three-dimensional approach[J]. Journal of Aircraft, 1997, 34(2): 197-205.
[13] Li J Z, Gao Z H, Zhan H. Study on inverse design method of airfoil based on optimization of target pressure distribution[J]. Journal of Projectiles Rockets Missiles and Guidance, 2008, 28(1): 187-190. (in Chinese) 李焦赞, 高正红, 詹浩. 基于目标压力分布优化的翼型反设计方法研究[J]. 弹箭与制导学报, 2008, 28(1): 187-190.
[14] Shang K M, Zhao Q J, Zhao G Q, et al. Inverse design analysis on helicopter rotor airfoils and aerodynamic shapes[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(5): 550-556. (in Chinese) 尚克明, 招启军, 赵国庆, 等. 直升机旋翼翼型及桨叶气动外形反设计分析[J]. 南京航空航天大学学报, 2010, 42(5): 550-556.
[15] Tapia F, Sanker L N, Schrage D P. An inverse aerodynamic design method for rotor blades[J]. Journal of the American Helicopter Society, 1997, 42(4): 321-326.
[16] Hilgenstock A. A fast method for the elliptic generation of three-dimensional grids with full boundary control[C]//Proceedings of the Second International Conference, 1988: 137-146.
[17] Wang B, Zhao Q J, Xu G, et al. A new moving-embedded grid method for numerical simulation of unsteady flow-field of the helicopter rotor in forward flight[J]. Acta Aerodynamica Sinica, 2012, 30(1): 14-21. (in Chinese) 王博, 招启军, 徐广, 等. 一种适合于旋翼前飞非定常流场计算的新型运动嵌套网格方法[J]. 空气动力学学报, 2012, 30(1): 14-21.
[18] Zhao Q J, Xu G H, Zhao J G. Numerical simulations of the unsteady flowfield of helicopter rotors on moving embedded grids[J]. Aerospace Science and Technology, 2005, 9(2): 117-124.
[19] Pletcher R H, Chen K H. On solving the compressible Navier-Stokes equations for unsteady flows at very low mach numbers, AIAA-1993-3368[R]. Reston: AIAA, 1993.
[20] Breley W R, Mcdonald H. An overview and generalization of implicit Navier-Stokes algorithms and approximate factorization[J]. Computers & Fluids, 2001, 30(7-8): 807-828. |