| [1] |
廖延彪, 黎敏, 张敏, 等. 光纤传感技术与应用[M]. 北京: 清华大学出版社, 2009.
|
|
LIAO Y B, LI M, ZHANG M, et al. Optical fiber sensing techniques and applications[M]. Beijing: Tsinghua University Press, 2009 (in Chinese).
|
| [2] |
薛景锋, 宋昊, 王文娟. 光纤光栅在航空结构健康监测中的应用前景[J]. 航空制造技术, 2012(22): 45-49.
|
|
XUE J F, SONG H, WANG W J. Application of optical fiber grating in health monitoring for aircraft structure[J]. Aeronautical Manufacturing Technology, 2012(22): 45-49 (in Chinese).
|
| [3] |
DI SANTE R. Fibre optic sensors for structural health monitoring of aircraft composite structures: recent advances and applications[J]. Sensors, 2015, 15(8): 18666-18713.
|
| [4] |
IELE A, LEONE M, CONSALES M, et al. Load monitoring of aircraft landing gears using fiber optic sensors[J]. Sensors and Actuators A: Physical, 2018, 281: 31-41.
|
| [5] |
IADICICCO A, NATALE D, DI PALMA P, et al. Strain monitoring of a composite drag strut in aircraft landing gear by fiber Bragg grating sensors[J]. Sensors, 2019, 19(10): 2239.
|
| [6] |
ŚWIĘCH Ł. Calibration of a load measurement system for an unmanned aircraft composite wing based on fibre Bragg gratings and electrical strain gauges[J]. Aerospace, 2020, 7(3): 27.
|
| [7] |
褚园园, 吴越, 黄鹏宇, 等. 基于FBG的飞机起落架载荷测试技术研究[J]. 半导体光电, 2022, 43(1): 182-187.
|
|
CHU Y Y, WU Y, HUANG P Y, et al. Research on load testing technology of aircraft landing gear based on FBG[J]. Semiconductor Optoelectronics, 2022, 43(1): 182-187 (in Chinese).
|
| [8] |
鹿利单, 闫光, 刘锋, 等. 基于预拉伸基片式FBG的工字梁载荷测试[J]. 压电与声光, 2017, 39(4): 619-623.
|
|
LU L D, YAN G, LIU F, et al. Joist load test based on pre-stretching substrate FBG sensor[J]. Piezoelectrics & Acoustooptics, 2017, 39(4): 619-623 (in Chinese).
|
| [9] |
黄勇. 基于光纤传感的襟翼操纵载荷试飞技术[J]. 航空学报, 2020, 41(4): 127-133.
|
|
HUANG Y. Flight test technic for flap operation load with optical fiber sensing[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 127-133 (in Chinese).
|
| [10] |
鲁明宇, 马超, 李翔宇, 等. 飞机作动器连杆光纤光栅载荷校准方法[J]. 数据采集与处理, 2020, 35(2): 270-277.
|
|
LU M Y, MA C, LI X Y, et al. Load calibration method of actuator connecting panels for aircraft based on fiber Bragg grating sensors[J]. Journal of Data Acquisition and Processing, 2020, 35(2): 270-277 (in Chinese).
|
| [11] |
童杏林, 何为, 张翠, 等. 光纤光栅与光纤法珀传感器在航空航天领域的研究与应用进展[J]. 激光杂志, 2018, 39(7): 1-7.
|
|
TONG X L, HE W, ZHANG C, et al. Research and application progress of fiber Bragg grating and Fabry-Perot sensors in the field of aeronautics and astronautics[J]. Laser Journal, 2018, 39(7): 1-7 (in Chinese).
|
| [12] |
刘凯伟, 刘琦牮, 李骏, 等. 基于FBG传感器和卷积神经网络的复合材料结构载荷识别研究[J]. 材料导报, 2023, 37(1): 49-55.
|
|
LIU K W, LIU Q J, LI J, et al. Load identification of composite structural based on FBG sensor and convolutional neural network[J]. Materials Reports, 2023, 37(1): 49-55 (in Chinese).
|
| [13] |
黄鹏宇, 陈诗, 刘元凤, 等. 基于FBG的某舰载机前起落架载荷监测技术研究[J]. 激光杂志, 2023, 44(7): 68-75.
|
|
HUANG P Y, CHEN S, LIU Y F, et al. Research on FBG-based front landing gear load monitoring technology of a carrier aircraft[J]. Laser Journal, 2023, 44(7): 68-75 (in Chinese).
|
| [14] |
HEGDE G, ASOKAN S, HEGDE G. Fiber Bragg grating sensors for aerospace applications: A review[J]. ISSS Journal of Micro and Smart Systems, 2022, 11(1): 257-275.
|
| [15] |
SHOI O, PETER B, OVIDIU N. Realtime health monitoring of composite structures using FBG sensors[J]. IFAC-PapersOnLine, 2022, 55(19): 157-162.
|
| [16] |
NICOLAS M J, SULLIVAN R W, RICHARDS W L. Large scale applications using FBG sensors: Determination of in-flight loads and shape of a composite aircraft wing[J]. Aerospace, 2016, 3(3): 18.
|
| [17] |
蒋熙馨. 旋转叶片动应变FBG分布式检测及振动估计研究[D]. 武汉: 武汉理工大学, 2014.
|
|
JIANG X X. Rotating blade’s dynamic strain distributed measurement and vibration estimation research based on FBG[D]. Wuhan: Wuhan University of Technology, 2014 (in Chinese).
|
| [18] |
LEE J M, HWANG Y. A novel online rotor condition monitoring system using fiber Bragg grating (FBG) sensors and a rotary optical coupler[J]. Measurement Science and Technology, 2008, 19(6): 065303.
|
| [19] |
WEN B R, TIAN X L, JIANG Z H, et al. Monitoring blade loads for a floating wind turbine in wave basin model tests using Fiber Bragg Grating sensors: a feasibility study[J]. Marine Structures, 2020, 71: 102729.
|
| [20] |
ALIAN H, KONFORTY S, BEN-SIMON U, et al. Bearing fault detection and fault size estimation using fiber-optic sensors[J]. Mechanical Systems and Signal Processing, 2019, 120: 392-407.
|
| [21] |
KIM K, LEE J M, HWANG Y H. Torsion measurement using fiber Bragg grating sensors and a rotary optical coupler[C]∥Fifteenth International Congress on Sound and Vibration.Auburn: International Institute of Acoustics and Vibration (IIAV), 2008: 2303-2310.
|
| [22] |
吴慧峰, 董瑞. 基于神经网络的直升机旋翼桨叶载荷模型研究[J]. 桂林航天工业学院学报, 2022, 27(3): 328-334.
|
|
WU H F, DONG R. Study on load model of helicopter rotor blade based on neural network[J]. Journal of Guilin University of Aerospace Technology, 2022, 27(3): 328-334 (in Chinese).
|
| [23] |
梁磊, 朱振华, 王慧, 等. 基于光纤光栅的直升机桨叶载荷测试技术研究[J]. 光电子·激光, 2019, 30(12): 1280-1285.
|
|
LIANG L, ZHU Z H, WANG H, et al. Research on testing technology of helicopter blade load based on FBG[J]. Journal of Optoelectronics·Laser, 2019, 30(12): 1280-1285 (in Chinese).
|
| [24] |
陈文, 夏品奇. 采用光纤传感测量的直升机旋翼桨叶分布载荷识别[J]. 振动工程学报, 2009, 22(2): 183-187.
|
|
CHEN W, XIA P Q. Identification of helicopter rotor blade distributed loads by using fiber optic sensor measurement[J]. Journal of Vibration Engineering, 2009, 22(2): 183-187 (in Chinese).
|
| [25] |
LUCZAK M, PEETERS B, DZIEDZIECH K. Static and dynamic testing of the full scale helicopter rotor blades[C]∥International Conference on Noise and Vibration Engineering 2010. New York:Curran Associates, Inc., 2010: 2131-2143.
|
| [26] |
NISHIYAMA M, IGAWA H, KASAI T, et al. Distributed strain measurement based on long-gauge FBG and delayed transmission/reflection ratiometric reflectometry for dynamic structural deformation monitoring[J]. Applied Optics, 2015, 54(5): 1191-1197.
|
| [27] |
SERAFINI J, BERNARDINI G, MATTIONI L, et al. Non-invasive dynamic measurement of helicopter blades[J]. Journal of Physics: Conference Series, 2017, 882(1): 012014.
|
| [28] |
KRESSEL I, BALTER J, EVENHAIM S, et al. Health and usage monitoring of aging helicopter structure using fiber Bragg grating sensor net[C]∥ 51st Israel Annual Conference on Aerospace Science. Haifa: Technion Israel Institute of Technology, 2011:144-145.
|
| [29] |
SUESSE S. Dynamic rotor blade displacement tracking with fiber-optical sensors for a health and usage monitoring system[C]∥18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2017.
|
| [30] |
SHAPIRA O, SHEINKMAN S, GLAM B, et al. Flight validation of a structural health monitoring system for CH-53 helicopter main rotor gearbox support[C]∥57th Israel Annual Conference on Aerospace Science. Haifa: Technion Israel Institute of Technology, 2017: 1-8.
|
| [31] |
程卫真. 共轴双旋翼桨叶结构载荷试飞研究[J]. 应用力学学报, 2019, 36(5): 1005-1011, 1253-1254.
|
|
CHENG W Z. Flight test technique for twin-rotor blade structural load of a coaxial helicopter[J]. Chinese Journal of Applied Mechanics, 2019, 36(5): 1005-1011, 1253-1254 (in Chinese).
|