航空学报 > 2025, Vol. 46 Issue (21): 532406-532406   doi: 10.7527/S1000-6893.2025.32406

中国飞机强度研究所建所 60 周年专刊

基于降维模型的翼身融合主承力结构优化方法

王雁1,2(), 陈亮1,2,3, 蔡永明1,2, 罗利龙4   

  1. 1.航空工业沈阳飞机设计研究所,沈阳 110035
    2.辽宁省飞行器结构强度数字孪生重点实验室,沈阳 110035
    3.大连理工大学 力学与航空航天学院,大连 116024
    4.中国飞机强度研究所 强度与结构完整性全国重点实验室,西安 710065
  • 收稿日期:2025-06-10 修回日期:2025-07-09 接受日期:2025-07-30 出版日期:2025-09-19 发布日期:2025-08-18
  • 通讯作者: 王雁 E-mail:wangyan_dut@163.com

Optimization method for primary load-bearing structure of blended wing body aircraft using reduced-dimensional models

Yan WANG1,2(), Liang CHEN1,2,3, Yongming CAI1,2, Lilong LUO4   

  1. 1.AVIC Shenyang Aircraft Design & Research Institute,Shenyang 110035,China
    2.Liaoning Key Laboratory of Digital Twin for Aircraft Structural Strength,Shenyang 110035,China
    3.School of Mechanics and Aerospace Engineering,Dalian University of Technology,Dalian 116024,China
    4.National Key Laboratory of Strength and Structural Integrity,Aircraft Strength Research Institute of China,Xi’an 710065,China
  • Received:2025-06-10 Revised:2025-07-09 Accepted:2025-07-30 Online:2025-09-19 Published:2025-08-18
  • Contact: Yan WANG E-mail:wangyan_dut@163.com

摘要:

针对翼身融合飞行器这类具有超大规模特征结构的拓扑优化问题,传统拓扑优化方法在应对百万量级单元设计域时存在显著的计算瓶颈,难以获得具有明确工程意义的传力路径设计方案。为此,提出一种基于降维模型的拓扑优化算法,通过构建三维实体结构与其降维模型之间的双向映射关系,建立分层优化分析框架。在优化迭代阶段采用降维模型进行优化以及设计变量更新,通过映射函数将优化结果实时传递至三维实体模型进行高保真力学响应分析,形成“降维优化-三维验证”的闭环反馈机制,引入尺寸控制函数提升主承力结构优化结果的工艺可达性,并结合工程算例,验证了基于降维模型的拓扑优化方法在高维优化问题中表现出的高效性和稳定性优势。

关键词: 翼身融合, 承力结构, 拓扑优化, 降维模型, 制造约束

Abstract:

For topology optimization problems involving large-scale structure features, such as blended wing body aircraft, traditional topology optimization methods face significant computational limitations when dealing with design domains on the order of millions of elements, making it difficult to obtain meaningful load path designs. To address this challenge, this paper proposed a topology optimization method based on reduced-dimensional models. By establishing mapping relationships between three-dimensional solid structures and their reduced-dimensional models, a hierarchical optimization framework is constructed. During the optimization iteration phase, the reduced-dimensional model is employed for optimization and design variable updates, while the mapping functions are used to transfer real-time optimization results to the three-dimensional solid model for high-fidelity mechanical response analysis. This forms a “reduced-dimensional optimization- three-dimensional validation” closed-loop feedback mechanism. Additionally, a size control function is introduced to enhance the manufacturing feasibility of the primary load-bearing structure. Through engineering case, the proposed dimensionality-reduction-based topology optimization method demonstrates its efficiency and stability advantages in solving high-dimensional optimization problems.

Key words: blended wing body, load bearing structure, topology optimization, reduced-dimensional model, manufacturing constraint

中图分类号: