| [1] |
WANG F. Application of deep learning algorithm in crack detection of green building materials[C]∥2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT). Piscataway: IEEE Press, 2022: 1-6.
|
| [2] |
WANG Y T, SHEN W W. Mechanical parts detection algorithm based on enhanced faster R-CNN[C]∥2021 China Automation Congress (CAC). Piscataway: IEEE Press, 2021: 4348-4353.
|
| [3] |
DING K Y, DING Z H, ZHANG Z B, et al. SCD-YOLO: A novel object detection method for efficient road crack detection[J]. Multimedia Systems, 2024, 30(6): 351.
|
| [4] |
LIU Z, ZHOU B. Research and application on the improved SSD chip defect inspection algorithm[C]∥2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE). Piscataway: IEEE Press, 2021: 551-555.
|
| [5] |
TAO H Q, LIU B X, CUI J Q, et al. A convolutional-transformer network for crack segmentation with boundary awareness[C]∥2023 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2023: 86-90.
|
| [6] |
ZHENG W W, JIANG X Y, FANG Z J, et al. TV-Net: A structure-level feature fusion network based on tensor voting for road crack segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(6): 5743-5754.
|
| [7] |
ZHANG Q, CHEN S S, WU Y, et al. Improved U-Net network asphalt pavement crack detection method[J]. PLoS One, 2024, 19(5): e0300679.
|
| [8] |
ZHOU H P, DENG B, SUN K L, et al. UTE-CrackNet: Transformer-guided and edge feature extraction U-shaped road crack image segmentation[J]. The Visual Computer, 2025, 41(4): 2271-2283.
|
| [9] |
LIU H J, YANG J, MIAO X Y, et al. CrackFormer network for pavement crack segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(9): 9240-9252.
|
| [10] |
SHAN J H, HUANG Y, JIANG W. DCUFormer: Enhancing pavement crack segmentation in complex environments with dual-cross/upsampling attention[J]. Expert Systems with Applications, 2025, 264: 125891.
|
| [11] |
LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: Hierarchical vision transformer using shifted windows[C]∥2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2021: 9992-10002.
|
| [12] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 770-778.
|
| [13] |
PATRO B N, NAMBOODIRI V P, AGNEESWARAN V S. SpectFormer: Frequency and attention is what you need in a vision transformer[C]∥2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) . Piscataway: IEEE Press, 2017: 1800-1807.
|
| [14] |
SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 1874-1883.
|
| [15] |
CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 1800-1807.
|
| [16] |
GU A, DAO T. Mamba: Linear-time sequence modeling with selective state spaces[DB/OL]. arXiv preprint:2312. 00752, 2024.
|
| [17] |
HAN D C, WANG Z Y, XIA Z F, et al. Demystify Mamba in vision: A linear attention perspective[C]∥38th Conference on Neural Information Processing Systems (NeurIPS 2024). Vancouver: OpenReview, 2024.
|
| [18] |
BLUM H. Biological shape and visual science (part I)[J]. Journal of Theoretical Biology, 1973, 38(2): 205-287.
|
| [19] |
BAI X, LATECKI L J. Discrete skeleton evolution[M]∥Energy Minimization Methods in Computer Vision and Pattern Recognition. Berlin, Heidelberg: Springer, 2007: 362-374.
|
| [20] |
MONTANARI U. A method for obtaining skeletons using a Quasi-Euclidean distance[J]. Journal of the ACM, 1968, 15(4): 600-624.
|
| [21] |
SHI Y, CUI L M, QI Z Q, et al. Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3434-3445.
|
| [22] |
YANG F, ZHANG L, YU S J, et al. Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1525-1535.
|
| [23] |
SHI Y, CUI L M, QI Z Q, et al. Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3434-3445.
|
| [24] |
ZOU Q, CAO Y, LI Q Q, et al. CrackTree: Automatic crack detection from pavement images[J]. Pattern Recognition Letters, 2012, 33(3): 227-238.
|
| [25] |
ZOU Q, ZHANG Z, LI Q Q, et al. DeepCrack:Learning hierarchical convolutional features for crack detection[J]. IEEE Transactions on Image Processing, 2018, 28(3): 1498-1512.
|
| [26] |
CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]∥Computer Vision-ECCV 2018. Cham: Springer, 2018: 833-851.
|
| [27] |
LIU Y H, YAO J, LU X H, et al. DeepCrack: A deep hierarchical feature learning architecture for crack segmentation[J]. Neurocomputing, 2019, 338: 139-153.
|
| [28] |
LAU S L H, CHONG E K P, YANG X, et al. Automated pavement crack segmentation using U-net-based convolutional neural network[J]. IEEE Access, 2020, 8: 114892-114899.
|
| [29] |
CHEN J, LU Y, YU Q, et al. TransUNet: Transformers make strong encoders for medical image segmentation[DB/OL]. arXiv preprint: 2102. 04306, 2021.
|
| [30] |
PANG J, ZHANG H, ZHAO H, et al. DcsNet: A real-time deep network for crack segmentation[J]. Signal, Image and Video Processing, 2022, 16(4): 911-919.
|
| [31] |
WU H S, CHEN S H, CHEN G L, et al. FAT-Net: Feature adaptive transformers for automated skin lesion segmentation[J]. Medical Image Analysis, 2022, 76: 102327.
|
| [32] |
XIANG C, GUO J J, CAO R, et al. A crack-segmentation algorithm fusing transformers and convolutional neural networks for complex detection scenarios[J]. Automation in Construction, 2023, 152: 104894.
|
| [33] |
TAO H Q, LIU B X, CUI J Q, et al. A convolutional-transformer network for crack segmentation with boundary awareness[C]∥2023 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2023: 86-90.
|
| [34] |
ZHANG J M, ZENG Z G, SHARMA P K, et al. A dual encoder crack segmentation network with Haar wavelet-based high–low frequency attention[J]. Expert Systems with Applications, 2024, 256: 124950.
|