航空学报 > 2024, Vol. 45 Issue (18): 229916-229916   doi: 10.7527/S1000-6893.2024.29916

固体力学与飞行器总体设计

基于BiGRU⁃Attention改进的航空设备故障知识图谱构建

陈勇刚, 刘康妮, 王帅()   

  1. 中国民用航空学院 民航安全工程学院,广汉 618307
  • 收稿日期:2023-11-27 修回日期:2023-12-13 接受日期:2023-12-28 出版日期:2024-01-05 发布日期:2024-01-04
  • 通讯作者: 王帅 E-mail:3320698061@qq.com
  • 基金资助:
    中国民用航空飞行学院中央高校教育教学改革专项(E2024045)

Fault knowledge graph construction for aviation equipment based on BiGRU⁃Attention improvement

Yonggang CHEN, Kangni LIU, Shuai WANG()   

  1. College of Civil Aviation Safety Engineering,Civil Aviation Flight University of China,Guanghan 618307,China
  • Received:2023-11-27 Revised:2023-12-13 Accepted:2023-12-28 Online:2024-01-05 Published:2024-01-04
  • Contact: Shuai WANG E-mail:3320698061@qq.com
  • Supported by:
    the Civil Aviation University of China Central University Education and Teaching Reform Special Fund(E2024045)

摘要:

针对航空设备故障数据量庞大且传统故障诊断方法低效的问题,利用知识图谱技术构建高性能图数据库来替代传统民机所用的关系数据库以提高故障诊断决策效率,并通过一种以注意力机制(Attention)结合双向门控循环神经网络(BiGRU)对知识抽取模型进行优化与改进。通过专家经验设计知识图谱的本体,在此基础上明确知识图谱中实体和关系类型。随后,利用BIO标注的故障文本语料训练BiGRU-Attention优化的知识抽取模型,以提高从非结构化文本中抽取实体和关系的效率。通过与经典知识抽取模型进行比较,发现BiGRU-Attention改进的知识抽取模型具有更优越的识别效果。最终,利用抽取出的实体和关系构建航空设备故障诊断知识图谱,有助于机务人员在航空设备故障维修中进行更准确的故障诊断。

关键词: 航空设备故障, 知识图谱, 注意力机制, 故障诊断, 双向门控循环神经网络

Abstract:

In response to the challenge of large volumes of aviation equipment failure data and the inefficiency of traditional fault diagnosis methods, we employ the knowledge graph technology to build a high-performance graph database. This database replaces the conventional relational databases used in civilian aircraft to enhance the efficiency of fault diagnosis decision-making. Additionally, we optimize and improve the knowledge extraction model by integrating an attention mechanism and the Bidirectional Gated Recurrent Unit (BiGRU). Initially, we designed the ontology of the knowledge graph based on expert experience, clearly defining entities and relationship types within the knowledge graph. Subsequently, we trained the BiGRU-Attention optimized knowledge extraction model using fault-text corpora annotated with BIO tags to enhance the efficiency of extracting entities and relationships from unstructured texts. Comparisons with classical knowledge extraction models reveal that the BiGRU-Attention improved model demonstrates superior recognition performance. Ultimately, we utilize the extracted entities and relationships to construct a knowledge graph for diagnosing faults in aviation equipment. This knowledge graph facilitates more accurate fault diagnosis for maintenance personnel involved in aviation equipment troubleshooting.

Key words: aviation equipment malfunction, knowledge graph, attention mechanism, fault diagnosis, bidirectional gated recurrent neural network

中图分类号: