1 |
中国民用航空局. 民航行业发展统计公报[R]. 北京: 中国民用航空局, 2010-2022.
|
|
Civil Aviation Administration of China. The Bluebook on the Development of China’s Air Transport Industry[R]. Beijing: Civil Aviation Administration of China, 2010-2022 (in Chinese).
|
2 |
贾宝惠, 姜番, 王玉鑫, 等. 基于民机维修文本数据的故障诊断方法[J]. 航空学报, 2023, 44(5): 326598.
|
|
JIA B H, JIANG F, WANG Y X, et al. Fault diagnosis method based on civil aircraft maintenance text data[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 326598 (in Chinese).
|
3 |
徐静. 基于自适应滑模观测器的DC-DC变换器故障诊断方法[D]. 吉林: 东北电力大学, 2021.
|
|
XU J. DC-DC converter fault diagnosis method using adaptive sliding mode observer[D].Jilin: Northeast Dianli University, 2021 (in Chinese).
|
4 |
赵万里, 郭迎清, 徐柯杰, 等. 航空发动机多电分布式控制系统故障诊断与容错关键技术综述[J]. 航空学报, 2023, 44(10): 027519.
|
|
ZHAO W L, GUO Y Q, XU K J, et al. Review of key technologies for fault diagnosis and accommodation for multi-electric distributed engine control system[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(10): 027519 (in Chinese).
|
5 |
李耀华, 王星州. 飞机液压系统故障诊断[J]. 计算机工程与应用, 2019, 55(5): 232-236, 264.
|
|
LI Y H, WANG X Z. Fault diagnosis of aircraft hydraulic system[J]. Computer Engineering and Applications, 2019, 55(5): 232-236, 264 (in Chinese).
|
6 |
王雪飞, 李青, 冯力. 基于模型和故障树的飞机故障诊断方法[J]. 科学技术与工程, 2017, 17(20): 308-313.
|
|
WANG X F, LI Q, FENG L. Aircraft fault diagnosis method based on model and fault-tree[J]. Science Technology and Engineering, 2017, 17(20): 308-313 (in Chinese).
|
7 |
YOU S H, CHO Y M, HAHN J O. Model-based fault detection and isolation in automotive yaw moment control system[J]. International Journal of Automotive Technology, 2017, 18(3): 405-416.
|
8 |
ZHANG K, XU Y G, LIAO Z Q, et al. A novel Fast Entrogram and its applications in rolling bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2021, 154: 107582.
|
9 |
林海香, 卢冉, 陆人杰, 等. 融合BiLSTM-CBA组合模型的高铁车载设备故障诊断[J]. 中国安全科学学报, 2022, 32(6): 79-86.
|
|
LIN H X, LU R, LU R J, et al. Fault diagnosis of high-speed railway on-board equipment based on BiLSTM-CBA hybrid model[J]. China Safety Science Journal, 2022, 32(6): 79-86 (in Chinese).
|
10 |
王修岩, 薛斌斌, 李宗帅. 基于Petri网的飞机交流发电机故障诊断方法研究[J]. 计算机测量与控制, 2012, 20(4): 878-880.
|
|
WANG X Y, XUE B B, LI Z S. Fault diagnosis methods of aircraft AC generator based on petri nets[J]. Computer Measurement & Control, 2012, 20(4): 878-880 (in Chinese).
|
11 |
王猛. 基于Petri网模型的高铁沿线外部环境安全风险研究[J]. 中国安全科学学报, 2022, 32(): 57-62.
|
|
WANG M. Research on the safety risk of external environment along high-speed railway based on petri net model[J]. China Safety Science Journal, 2022, 32(Sup 1): 57-62 (in Chinese).
|
12 |
王凯, 樊纲旗, 董瑾, 等. 故障树分析法(FTA)在大型飞机机载设备系统故障诊断中的应用[J]. 现代制造技术与装备, 2018(11): 144-146.
|
|
WANG K, FAN G Q, DONG J, et al. Application of fault tree analysis(FTA) in fault diagnosis of large aircraft airborne equipment system[J]. Modern Manufacturing Technology and Equipment, 2018(11): 144-146 (in Chinese).
|
13 |
陈洪转, 赵爱佳, 李腾蛟, 等. 基于故障树的复杂装备模糊贝叶斯网络推理故障诊断[J]. 系统工程与电子技术, 2021, 43(5): 1248-1261.
|
|
CHEN H Z, ZHAO A J, LI T J, et al. Fuzzy Bayesian network inference fault diagnosis of complex equipment based on fault tree[J]. Systems Engineering and Electronics, 2021, 43(5): 1248-1261 (in Chinese).
|
14 |
李欣, 乔颖, 李想, 等. 基于ECA规则推理的故障诊断技术[J]. 计算机工程与设计, 2011, 32(3): 1023-1028.
|
|
LI X, QIAO Y, LI X, et al. Fault diagnosis technology based on ECA rules[J]. Computer Engineering and Design, 2011, 32(3): 1023-1028 (in Chinese).
|
15 |
阴东玲, 陈兆波, 曾建潮, 等. 煤矿作业人员不安全行为的影响因素分析[J]. 中国安全科学学报, 2015, 25(12): 151-156.
|
|
YIN D L, CHEN Z B, ZENG J C, et al. Analysis of factors affecting coal mine operators’ unsafe acts[J]. China Safety Science Journal, 2015, 25(12): 151-156 (in Chinese).
|
16 |
EL-SHAFAI W, MAHMOUD A A, EL-RABAIE E S M, et al. Traditional Chinese medicine automated diagnosis based on knowledge graph reasoning[J]. Computers, Materials & Continua, 2022, 71(1): 159-170.
|
17 |
刘凤娟, 赵蔚, 姜强, 等. 基于知识图谱的个性化学习模型与支持机制研究[J]. 中国电化教育, 2022(5): 75-81, 90.
|
|
LIU F J, ZHAO W, JIANG Q, et al. Research on personalized learning model and support mechanism based on knowledge graph[J]. China Educational Technology, 2022(5): 75-81, 90 (in Chinese).
|
18 |
王杰, 谢忠局, 赵建涛, 等. 基于知识图谱和用户画像的金融产品推荐系统[J]. 计算机应用, 2022, 42(): 43-47.
|
|
WANG J, XIE Z J, ZHAO J T, et al. Financial product recommendation system based on knowledge map and user portrait[J]. Journal of Computer Applications, 2022, 42(Sup 1): 43-47 (in Chinese).
|
19 |
ZHAO Y C, ZHANG B K, GAO D. Construction of petrochemical knowledge graph based on deep learning[J]. Journal of Loss Prevention in the Process Industries, 2022, 76: 104736.
|
20 |
邢雪琪, 丁雨童, 夏唐斌, 等. 基于知识图谱的商用飞机维修方案推荐系统集成建模[J]. 浙江大学学报(工学版), 2023, 57(3): 512-521.
|
|
XING X Q, DING Y T, XIA T B, et al. Integrated modeling of commercial aircraft maintenance plan recommendation system based on knowledge graph[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(3): 512-521 (in Chinese).
|
21 |
薛坤. 面向军事领域的知识图谱构建与应用研究[D]. 大连: 大连理工大学, 2020.
|
|
XUE K. Research on the construction and application of knowledge graph in the military field[D].Dalian: Dalian University of Technology, 2020 (in Chinese).
|
22 |
聂同攀, 曾继炎, 程玉杰, 等. 面向飞机电源系统故障诊断的知识图谱构建技术及应用[J]. 航空学报, 2022, 43(8): 625499.
|
|
NIE T P, ZENG J Y, CHENG Y J, et al. Knowledge graph construction technology and its application in aircraft power system fault diagnosis[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 625499 (in Chinese).
|
23 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[EB/OL]. 2018: arXiv: 1810.04805. .
|
24 |
陈克正, 郭晓然, 钟勇, 等. 基于负训练和迁移学习的关系抽取方法[J]. 计算机应用, 2023, 43(8): 2426-2430.
|
|
CHEN K Z, GUO X R, ZHONG Y, et al. Relation extraction method based on negative training and transfer learning[J]. Journal of Computer Applications, 2023, 43(8): 2426-2430 (in Chinese).
|
25 |
CHIU J P C, NICHOLS E. Named entity recognition with bidirectional LSTM-CNNs[J]. Transactions of the Association for Computational Linguistics, 2016, 4: 357-370.
|
26 |
CHE J L, TANG L, DENG S, et al. Chinese word segmentation based on Bidirectional GRU-CRF model[J]. International Journal of Performability Engineering, 2018,14(12): 3066-3075.
|
27 |
MENG F Q, YANG S S, WANG J D, et al. Creating knowledge graph of electric power equipment faults based on BERT-BiLSTM-CRF model[J]. Journal of Electrical Engineering & Technology, 2022, 17(4): 2507-2516.
|
28 |
MENG F Q, YANG S S, WANG J D, et al. Creating knowledge graph of electric power equipment faults based on BERT-BiLSTM-CRF model[J]. Journal of Electrical Engineering & Technology, 2022, 17(4): 2507-2516
|
29 |
LV J H, DU J P, ZHOU N, et al. BERT-BIGRU-CRF: A novel entity relationship extraction model[C]∥ 2020 IEEE International Conference on Knowledge Graph (ICKG). Piscataway: IEEE Press, 2020: 157-164.
|
30 |
NGUYEN T H, GRISHMAN R. Relation extraction: Perspective from convolutional neural networks[C]∥ Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2015: 39-48.
|
31 |
LAN W W, XU W. Neural network models for paraphrase identification, semantic textual similarity, natural language inference, and question answering[EB/OL]. 2018: arXiv: 1806.04330.
|
32 |
ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]∥ Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg: Association for Computational Linguistics, 2016: 207-212.
|