刘延芳1,2(), 佘佳宇1, 袁秋帆3, 周芮1, 齐乃明1,2
收稿日期:
2024-01-08
修回日期:
2024-01-18
接受日期:
2024-03-26
出版日期:
2024-07-25
发布日期:
2024-04-10
通讯作者:
刘延芳
E-mail:lyf04025121@126.com
基金资助:
Yanfang LIU1,2(), Jiayu SHE1, Qiufan YUAN3, Rui ZHOU1, Naiming QI1,2
Received:
2024-01-08
Revised:
2024-01-18
Accepted:
2024-03-26
Online:
2024-07-25
Published:
2024-04-10
Contact:
Yanfang LIU
E-mail:lyf04025121@126.com
Supported by:
摘要:
得益于深度学习方法的发展,近年来目标检测方法的性能有了很大的提升。然而,从无人机(UAV)遥感图像中检测目标仍然存在很大的挑战,原因包括:UAV遥感图像中目标分辨率小、背景复杂,现有算法难以满足实时性要求。面对这些挑战,提出了一种基于多尺度多深度特征提取(MMFE)网络的实时小目标检测(RTSTD)方法,能够高效的从UAV遥感图像中检测小目标。RTSTD将一幅输入图像剪裁成多个小尺寸的图像,并将一部分小尺寸图像输入到轻量化的MMFE网络中。因此,RTSTD具有处理任意分辨率的遥感图像而不丢失图像细节特征的能力。对于MMFE网络,提出了一种更有效的输出:重叠向量能够表示目标在输入图像中的位置和置信度。为了增强MMFE网络区分目标和复杂背景的能力,重新定义了正样本和负样本。为测试RTSTD的性能,从开源数据集UAV123、DTB70和AU-AIR中筛选重构了7个数据集,共8369张UAV遥感图像,涉及地面和海面场景下的小目标检测。结果证明,与现有的检测方法相比,RTSTD方法在准确性和速度方面都取得了改善,平均F1-Score>0.90,GPU运行每秒>66帧,CPU运行每秒>35帧。
中图分类号:
刘延芳, 佘佳宇, 袁秋帆, 周芮, 齐乃明. 无人机遥感图像实时小目标检测方法[J]. 航空学报, 2024, 45(14): 630119-630119.
Yanfang LIU, Jiayu SHE, Qiufan YUAN, Rui ZHOU, Naiming QI. Real⁃time small target detection networks for UAV remote sensing[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 630119-630119.
表 3
基于UAV⁃3的消融实验
方法 | F1-Score | FPS GPU/CPU | IoU |
---|---|---|---|
MMFE64+50%+ | 0.994 | 63.5/39.3 | 0.74 |
MMFE64+50%+ | 0.944 | 65.0/35.3 | 0.71 |
MMFE64+50%+ | 0.944 | 59.2/35.1 | 0.68 |
MMFE72+50%+ | 0.994 | 65.7/42.1 | 0.76 |
MMFE72+50%+ | 0.967 | 62.0/38.4 | 0.77 |
MMFE72+50%+ | 0.986 | 64.9/38.3 | 0.71 |
MMFE80+50%+ | 0.988 | 66.3/40.1 | 0.75 |
MMFE80+50%+ | 0.970 | 66.5/37.2 | 0.73 |
MMFE80+50%+ | 0.988 | 67.6/38.6 | 0.71 |
MMFE88+50%+ | 0.991 | 68.4/40.8 | 0.76 |
MMFE8+50%+ | 0.980 | 69.1/38.0 | 0.77 |
MMFE88+50%+ | 0.988 | 68.1/36.4 | 0.71 |
MMFE96+12.5%+ | 0.994 | 48.1/46.2 | 0.71 |
MMFE96+12.5%+ | 0.988 | 50.3/40.9 | 0.70 |
MMFE96+12.5%+ | 0.991 | 50.2/43.3 | 0.64 |
MMFE96+25%+ | 0.991 | 64.1/ 52.1 | 0.71 |
MMFE96+25%+ | 0.972 | 68.6/46.8 | 0.72 |
MMFE96+25%+ | 0.991 | 63.9/49.4 | 0.63 |
MMFE96+50%+ | 0.991 | 73.4/42.2 | 0.70 |
MMFE96+50%+ | 0.959 | 71.6/38.9 | 0.75 |
MMFE96+50%+ | 0.986 | 72.6/37.6 | 0.65 |
MMFE96+100%+ | 0.988 | 72.9/31.2 | 0.71 |
MMFE96+100%+ | 0.927 | 68.4/27.3 | 0.78 |
MMFE96+100%+ | 0.978 | 68.1/27.8 | 0.66 |
表 4
RTSTD与其他检测方法的检测效果
方法 | F1-Score | FPS GPU/CPU | IoU | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UAV-1 | UAV-2 | UAV-3 | UAV-4 | UAV-5 | DTB70 | AU-AIR | UAV-1 | UAV-2 | UAV-3 | UAV-4 | UAV-5 | DTB70 | AU-AIR | UAV-1 | UAV-2 | UAV-3 | UAV-4 | UAV-5 | DTB70 | AU-AIR | |
MMFE64+12.5% | 0.993 | 0.967 | 0.991 | 0.984 | 0.978 | 0.960 | 0.851 | 77.8/119.4 | 68.3/106.6 | 47.7/39.2 | 46.3/44.5 | 28.9/26.4 | 51.2/45.0 | 67.5/64.4 | 0.68 | 0.52 | 0.72 | 0.74 | 0.68 | 0.59 | 0.60 |
MMFE64+25% | 0.991 | 0.962 | 0.994 | 0.988 | 0.978 | 0.951 | 0.891 | 127.0/171.5 | 116.0/142.4 | 59.7/46.2 | 60.3/52.0 | 42.9/33.6 | 60.3/54.2 | 100.5/95.1 | 0.68 | 0.53 | 0.72 | 0.74 | 0.68 | 0.62 | 0.62 |
MMFE64+50% | 0.991 | 0.958 | 0.994 | 0.984 | 0.978 | 0.966 | 0.905 | 161.6/183.3 | 157.1/150.4 | 63.5/39.3 | 63.9/39.7 | 52.2/30.5 | 62.4/40.0 | 116.8/95.7 | 0.69 | 0.53 | 0.74 | 0.76 | 0.68 | 0.61 | 0.64 |
MMFE64+100% | 0.986 | 0.932 | 0.988 | 0.973 | 0.980 | 0.934 | 0.929 | 172.1/154.1 | 172.4/140.4 | 63.0/27.7 | 61.7/27.2 | 57.7/27.0 | 57.8/27.3 | 119.1/84.8 | 0.70 | 0.53 | 0.75 | 0.77 | 0.68 | 0.64 | 0.67 |
MMFE72+12.5% | 0.997 | 0.948 | 0.994 | 0.984 | 0.914 | 0.956 | 0.852 | 94.9/148.1 | 78.3/112.8 | 49.1/44.5 | 48.1/45.5 | 25.8/26.6 | 51.2/48.3 | 59.3/63.3 | 0.65 | 0.48 | 0.73 | 0.63 | 0.64 | 0.60 | 0.62 |
MMFE72+25% | 0.995 | 0.943 | 0.994 | 0.981 | 0.912 | 0.965 | 0.858 | 136.3/177.7 | 127.2/145.4 | 57.7/50.3 | 60.0/51.7 | 40.5/33.7 | 62.8/52.3 | 88.9/96.4 | 0.65 | 0.48 | 0.74 | 0.60 | 0.64 | 0.61 | 0.63 |
MMFE72+50% | 0.993 | 0.914 | 0.994 | 0.984 | 0.916 | 0.961 | 0.881 | 167.5/196.7 | 160.5/153.7 | 65.7/42.1 | 66.6/37.5 | 50.9/31.4 | 62.0/42.9 | 106.8/101.3 | 0.67 | 0.49 | 0.76 | 0.61 | 0.64 | 0.62 | 0.64 |
MMFE72+100% | 0.985 | 0.889 | 0.991 | 0.959 | 0.916 | 0.947 | 0.926 | 168.9/158.6 | 171.2/149.0 | 63.9/30.0 | 63.6/29.9 | 59.2/29.7 | 61.0/30.3 | 115.0/90.5 | 0.69 | 0.51 | 0.77 | 0.66 | 0.64 | 0.62 | 0.65 |
MMFE80+12.5% | 0.994 | 0.986 | 0.991 | 0.992 | 0.937 | 0.956 | 0.847 | 78.0/129.0 | 65.8/94.2 | 27.6/28.8 | 46.5/43.3 | 27.6/28.8 | 46.3/48.0 | 66.8/85.1 | 0.62 | 0.53 | 0.74 | 0.71 | 0.64 | 0.60 | 0.62 |
MMFE80+25% | 0.990 | 0.981 | 0.994 | 0.984 | 0.946 | 0.956 | 0.868 | 120.7/173.0 | 117.5/127.3 | 60.0/49.4 | 69.3/52.1 | 43.0/35.6 | 60.5/54.8 | 87.6/102.0 | 0.63 | 0.55 | 0.75 | 0.72 | 0.64 | 0.64 | 0.63 |
MMFE80+50% | 0.981 | 0.963 | 0.988 | 0.984 | 0.942 | 0.975 | 0.909 | 168.3/201.2 | 163.2/169.2 | 66.3/40.1 | 70.9/44.7 | 54.0/33.3 | 67.1/45.1 | 107.3/101.9 | 0.64 | 0.55 | 0.75 | 0.74 | 0.64 | 0.64 | 0.65 |
MMFE80+100% | 0.962 | 0.955 | 0.986 | 0.973 | 0.943 | 0.961 | 0.942 | 173.2/170.7 | 173.9/156.3 | 67.0/31.3 | 64.6/31.0 | 62.0/31.8 | 63.6/30.9 | 118.6/87.0 | 0.65 | 0.55 | 0.77 | 0.77 | 0.64 | 0.65 | 0.67 |
MMFE88+12.5% | 0.981 | 0.986 | 0.994 | 0.992 | 0.962 | 0.960 | 0.858 | 46.25/82.1 | 44.0/77.3 | 45.8/44.3 | 49.6/45.4 | 26.1/26.3 | 51.9/46.6 | 72.7/84.9 | 0.62 | 0.47 | 0.75 | 0.72 | 0.62 | 0.60 | 0.64 |
MMFE88+25% | 0.977 | 0.977 | 0.994 | 0.992 | 0.963 | 0.966 | 0.898 | 103.7/155.6 | 94.7/136.0 | 61.6/53.9 | 63.8/52.9 | 37.4/32.4 | 61.5/56.4 | 97.3/101.9 | 0.62 | 0.47 | 0.75 | 0.72 | 0.62 | 0.59 | 0.63 |
MMFE88+50% | 0.975 | 0.972 | 0.991 | 0.992 | 0.963 | 0.951 | 0.915 | 158.0/186.2 | 152.0/159.7 | 68.4/40.8 | 68.3/43.9 | 46.6/30.8 | 65.7/43.3 | 113.4/99.3 | 0.63 | 0.47 | 0.76 | 0.72 | 0.62 | 0.60 | 0.64 |
MMFE88+100% | 0.961 | 0.955 | 0.991 | 0.992 | 0.963 | 0.952 | 0.951 | 172.2/163.9 | 163.0/145.0 | 67.8/29.5 | 68.1/29.4 | 62.0/29.1 | 61.3/29.7 | 115.2/77.8 | 0.64 | 0.49 | 0.76 | 0.73 | 0.62 | 0.61 | 0.67 |
MMFE96+12.5% | 0.967 | 0.986 | 0.994 | 0.988 | 0.910 | 0.955 | 0.840 | 56.0/93.0 | 55.9/78.9 | 48.1/46.2 | 54.6/44.7 | 29.1/28.2 | 46.2/47.4 | 65.4/79.4 | 0.62 | 0.41 | 0.71 | 0.73 | 0.62 | 0.57 | 0.60 |
MMFE96+25% | 0.960 | 0.972 | 0.991 | 0.988 | 0.901 | 0.961 | 0.860 | 118.2/152.4 | 107.5/139.8 | 64.1/52.1 | 64.6/52.6 | 44.9/35.1 | 66.9/54.2 | 102.0/98.3 | 0.62 | 0.40 | 0.71 | 0.72 | 0.62 | 0.58 | 0.63 |
MMFE96+50% | 0.954 | 0.930 | 0.991 | 0.984 | 0.910 | 0.956 | 0.887 | 166.3/188.3 | 160.3/153.7 | 73.4/42.2 | 73.2/46.5 | 54.7/32.9 | 71.3/45.3 | 117.4/95.7 | 0.63 | 0.42 | 0.70 | 0.73 | 0.62 | 0.59 | 0.62 |
MMFE96+100% | 0.939 | 0.902 | 0.988 | 0.984 | 0.907 | 0.943 | 0.928 | 180.2/163.5 | 180.5/141.8 | 72.9/31.2 | 71.3/30.7 | 66.1/30.8 | 66.8/31.9 | 129.1/92.1 | 0.64 | 0.44 | 0.71 | 0.76 | 0.62 | 0.60 | 0.64 |
YOLOv3 | 0.958 | 0.915 | 0.851 | 0.825 | 0.958 | 0.687 | 0.865 | 32.2/2.3 | 23.1/1.9 | 25.6/2.0 | 24.9/2.1 | 20.9/1.8 | 20.8/1.9 | 22.5/1.9 | 0.87 | 0.90 | 0.84 | 0.86 | 0.81 | 0.81 | 0.87 |
YOLOv5 | 0.994 | 0.990 | 0.994 | 0.992 | 0.860 | 0.990 | 0.990 | 54.8/19.8 | 55.1/18.0 | 54.6/18.3 | 53.2/18.4 | 47.8/17.8 | 55.5/18.0 | 39.2/17.8 | 0.96 | 0.97 | 0.96 | 0.86 | 0.65 | 0.65 | 0.73 |
YOLOv8 | 0.998 | 0.986 | 0.994 | 0.992 | 0.966 | 0.980 | 0.973 | 46.9/15.8 | 48.1/15.9 | 45.6/15.8 | 45.7/15.6 | 42.4/15.4 | 39.1/14.8 | 38.3/14.6 | 0.98 | 0.98 | 0.98 | 0.98 | 0.88 | 0.85 | 0.90 |
SSD | 0.994 | 0.990 | 0.983 | 0.988 | 0.972 | 0.943 | 0.965 | 17.2/3.3 | 17.2/3.3 | 17.3/3.3 | 17.2/3.3 | 13.3/3.3 | 11.1/3.2 | 7.0/3.0 | 0.96 | 0.94 | 0.86 | 0.89 | 0.78 | 0.81 | 0.85 |
Faster-RCNN | 0.998 | 0.953 | 0.983 | 0.823 | 0.711 | 0.530 | 0.946 | 9.6/0.3 | 8.5/0.3 | 9.1/0.3 | 8.6/0.3 | 8.0/0.3 | 2.63/0.2 | 6.7/0.3 | 0.93 | 0.80 | 0.90 | 0.75 | 0.66 | 0.40 | 0.81 |
FCOS | 0.990 | 0.990 | 0.980 | 0.988 | 0.974 | 0.971 | 0.981 | 8.1/0.3 | 7.8/0.4 | 7.8/0.4 | 7.9/0.4 | 7.6/0.3 | 7.4/0.3 | 7.0/0.3 | 0.98 | 0.98 | 0.98 | 0.98 | 0.80 | 0.80 | 0.85 |
RetinaNet | 0.998 | 0.986 | 0..750 | 0.992 | 0.589 | 0.882 | 0.993 | 5.9/0.9 | 6.3/0.9 | 5.9/0.9 | 5.5/0.9 | 5.2/0.9 | 4.6/0.8 | 4.6/0.8 | 0.99 | 0.99 | 0.99 | 0.99 | 0.89 | 0.85 | 0.88 |
表 5
典型目标检测方法
方法 | 分类 | 代表性贡献 | 年份 | 参数量/M |
---|---|---|---|---|
Faster-RCNN | 两阶段 | RPN网络 | 2015 | 41.299 |
SSD | 一阶段 | 多尺度预测 | 2016 | 23.746 |
YOLOv3 | 一阶段 | 多尺度预测、残差结构 | 2018 | 61.949 |
RetinaNet | 一阶段 | Focal Loss平衡正负样本 | 2018 | 36.320 |
FCOS | 一阶段 | Anchor-Free、Center-Ness | 2019 | 32.062 |
YOLOv5 | 一阶段 | 数据增强、自适应AnchorFocus结构、CSPNet | 2020 | 2.947 |
YOLOv8 | 一阶段 | Anchor-Free、分类检测解耦正样本分配策略 | 2023 | 5.049 |
RTSTD | 一阶段 | 裁剪策略、MMFE网络正负样本定义、重叠向量 | 2024 | 0.069 |
1 | XU C, XU M, YIN C J. Optimized multi-UAV cooperative path planning under the complex confrontation environment[J]. Computer Communications, 2020, 162: 196-203. |
2 | PIERUCCI L, BOCCHI L. Improvements of radar clutter classification in air traffic control environment[C]∥ 2007 IEEE International Symposium on Signal Processing and Information Technology. Piscataway: IEEE Press, 2007: 721-724. |
3 | YU X H, GONG Y Q, JIANG N, et al. Scale match for tiny person detection[C]∥ 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway: IEEE Press, 2020: 1246-1254. |
4 | CASBEER D W, KINGSTON D B, BEARD R W, et al. Cooperative forest fire surveillance using a team of small unmanned air vehicles[J]. International Journal of Systems Science, 2006, 37(6): 351-360. |
5 | MADEMLIS I, MYGDALIS V, NIKOLAIDIS N, et al. High-level multiple-UAV cinematography tools for covering outdoor events[J]. IEEE Transactions on Broadcasting, 2019, 65(3): 627-635. |
6 | KELLENBERGER B, MARCOS D, TUIA D. Detecting mammals in UAV images: Best practices to address a substantially imbalanced dataset with deep learning[J]. Remote Sensing of Environment, 2018, 216: 139-153. |
7 | ZHANG L D, PENG Z M. Infrared small target detection based on partial sum of the tensor nuclear norm[J]. Remote Sensing, 2019, 11(4): 382. |
8 | LI B Y, XIAO C, WANG L G, et al. Dense nested attention network for infrared small target detection[J]. IEEE Transactions on Image Processing, 2023, 32: 1745-1758. |
9 | NASRABADI N M. DeepTarget: An automatic target recognition using deep convolutional neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 2687-2697. |
10 | RAZAVIAN A S, AZIZPOUR H, SULLIVAN J, et al. CNN features off-the-shelf: An astounding baseline for recognition[C]∥ 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE Press, 2014: 512-519. |
11 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥ Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: ACM, 2014: 580-587. |
12 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |
13 | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]∥ 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 2980-2988. |
14 | DING J, XUE N, LONG Y, et al. Learning RoI transformer for oriented object detection in aerial images[C]∥ 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 2844-2853. |
15 | XIE X X, CHENG G, WANG J B, et al. Oriented R-CNN for object detection[C]∥ 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2021: 3500-3509. |
16 | XU Y C, FU M T, WANG Q M, et al. Gliding vertex on the horizontal bounding box for multi-oriented object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(4): 1452-1459. |
17 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 779-788. |
18 | REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. 2018: arXiv: 1804.02767. |
19 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. 2020: arXiv: . |
20 | TAN L, LV X Y, LIAN X F, et al. YOLOv4_Drone: UAV image target detection based on an improved YOLOv4 algorithm[J]. Computers & Electrical Engineering, 2021, 93: 107261. |
21 | ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]∥ 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Piscataway: IEEE Press, 2021: 2778-2788. |
22 | CAO S H, WANG T, LI T, et al. UAV small target detection algorithm based on an improved YOLOv5s model[J]. Journal of Visual Communication and Image Representation, 2023, 97: 103936. |
23 | 奉志强, 谢志军, 包正伟, 等. 基于改进YOLOv5的无人机实时密集小目标检测算法[J]. 航空学报, 2023, 44(7): 327106. |
FENG Z Q, XIE Z J, BAO Z W, et al. Real-time dense small object detection algorithm for UAV based on improved YOLOv5[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 327106 (in Chinese). | |
24 | REIS D, KUPEC J, HONG J, et al. Real-time flying object detection with YOLOv8[J]. ArXiv e-Prints, 2023: arXiv: . |
25 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]∥European Conference on Computer Vision. Cham: Springer, 2016: 21-37. |
26 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 936-944. |
27 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 2999-3007. |
28 | TIAN Z, SHEN C H, CHEN H, et al. FCOS: Fully convolutional one-stage object detection[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2019: 9626-9635. |
29 | YANG F, FAN H, CHU P, et al. Clustered object detection in aerial images[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2019: 8310-8319. |
30 | ZHANG P, ZHANG Y E, HUANG Y, et al. SAR fast target imaging in sparse field based on AlexNet[C]∥2021 IEEE Radar Conference (RadarConf21). Piscataway: IEEE Press, 2021: 1-6. |
31 | LIU Z G, LI D Y, GE S S, et al. Small traffic sign detection from large image[J]. Applied Intelligence, 2020, 50(1): 1-13. |
32 | LIU Z G, DU J, TIAN F, et al. MR-CNN: A multi-scale region-based convolutional neural network for small traffic sign recognition[J]. IEEE Access, 2019, 7: 57120-57128. |
33 | DUAN K W, DU D W, QI H G, et al. Detecting small objects using a channel-aware deconvolutional network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(6): 1639-1652. |
34 | LENG J X, LIU Y, DU D W, et al. Robust obstacle detection and recognition for driver assistance systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1560-1571. |
35 | WILMS C, FRINTROP S. AttentionMask: Attentive, efficient object proposal generation focusing on small objects[C]∥Asian Conference on Computer Vision. Cham: Springer, 2019: 678-694. |
36 | CHEN Z G, WU K H, LI Y B, et al. SSD-MSN: An improved multi-scale object detection network based on SSD[J]. IEEE Access, 2019, 7: 80622-80632. |
37 | LI C L, YANG T, ZHU S J, et al. Density map guided object detection in aerial images[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2020: 737-746. |
38 | 李红艳, 李春庚, 安居白, 等. 注意力机制改进卷积神经网络的遥感图像目标检测[J]. 中国图象图形学报, 2019, 24(8): 1400-1408. |
LI H Y, LI C G, AN J B, et al. Attention mechanism improves CNN remote sensing image object detection[J]. Journal of Image and Graphics, 2019, 24(8): 1400-1408 (in Chinese). | |
39 | 李子豪, 王正平, 贺云涛. 基于自适应协同注意力机制的航拍密集小目标检测算法[J]. 航空学报, 2023, 44(13): 327944. |
LI Z H, WANG Z P, HE Y T. Aerial-photography dense small target detection algorithm based on adaptive cooperative attention mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 327944 (in Chinese). | |
40 | WANG J Q, CHEN K, YANG S, et al. Region proposal by guided anchoring[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 2960-2969. |
41 | JIANG B R, LUO R X, MAO J Y, et al. Acquisition of localization confidence for accurate object detection[C]∥Computer Vision⁃ECCV 2018: 15th European Conference, New York: ACM, 2018: 816–832. |
42 | 李红光, 于若男, 丁文锐. 基于深度学习的小目标检测研究进展[J]. 航空学报, 2021, 42(7): 024691. |
LI H G, YU R N, DING W R. Research development of small object traching based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 024691 (in Chinese). | |
43 | ZHAO B Y, WU Y F, GUAN X R, et al. An improved aggregated-mosaic method for the sparse object detection of remote sensing imagery[J]. Remote Sensing, 2021, 13(13): 2602. |
44 | PENG H, TAN X D. Improved YOLOX’s anchor-free SAR image ship target detection[J]. IEEE Access, 2022, 10: 70001-70015. |
45 | LE H, BORJI A. What are the receptive, effective receptive, and projective fields of neurons in convolutional neural networks? [EB/OL]. (2017-05-17). . |
46 | LUO W J, LI Y J, URTASUN R, et al. Understanding the effective receptive field in deep convolutional neural networks[C]∥Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM, 2016: 4905–4913. |
47 | DING X H, ZHANG X Y, HAN J G, et al. Scaling up your kernels to 31 × 31: Revisiting large kernel design in CNNs[C]v2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 11953-11965. |
48 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2015: 1-9. |
49 | ZHAO Q J, SHENG T, WANG Y T, et al. M2Det: A single-shot object detector based on multi-level feature pyramid network[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 9259-9266. |
50 | ZHANG G, LI Z Y, LI J M, et al. CFNet: Cascade fusion network for dense prediction[EB/OL]. arXiv preprint: 2302.06052, 2023. |
51 | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]∥ 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 2261-2269. |
52 | XIA G S, BAI X, DING J, et al. DOTA: A large-scale dataset for object detection in aerial images[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 3974-3983. |
53 | LAM D, KUZMA R, MCGEE K, et al. xView: Objects in context in overhead imagery[DB/OL]. arXiv preprint: 1802.07856, 2018. |
54 | MUELLER M, SMITH N, GHANEM B. A benchmark and simulator for UAV tracking[C]∥European Conference on Computer Vision. Cham: Springer, 2016: 445-461. |
55 | LI S Y, YEUNG D Y. Visual object tracking for unmanned aerial vehicles: A benchmark and new motion models[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, 2017. |
56 | BOZCAN I, KAYACAN E. AU-AIR: A multi-modal unmanned aerial vehicle dataset for low altitude traffic surveillance[C]∥ 2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2020: 8504-8510. |
[1] | 赵其昌, 吴一全, 苑玉彬. 光学遥感图像舰船目标检测与识别方法研究进展[J]. 航空学报, 2024, 45(8): 29025-029025. |
[2] | 王子玲, 熊振宇, 杨璐铖, 杨蕊宁, 黄林周. AIS和光学遥感图像引导的星载SAR舰船目标识别网络[J]. 航空学报, 2024, 45(2): 328672-328672. |
[3] | 于傲泽, 魏维伟, 王平, 张金强, 柯文雄. 基于分块复合注意力的无人机小目标检测算法[J]. 航空学报, 2024, 45(14): 629148-629148. |
[4] | 王潇, 刘贞报. 基于多层多向Transformer的红外弱小目标检测[J]. 航空学报, 2024, 45(14): 629490-629490. |
[5] | 李峻宇, 刘乾坤, 付莹. 融合注意力机制的红外小目标检测[J]. 航空学报, 2024, 45(14): 628959-628959. |
[6] | 陈立群, 邹旭, 张磊, 朱颖盼, 王港, 陈金勇. 基于国产商用器件的星载智能目标检测技术[J]. 航空学报, 2023, 44(S2): 728860-728860. |
[7] | 奉志强, 谢志军, 包正伟, 陈科伟. 基于改进YOLOv5的无人机实时密集小目标检测算法[J]. 航空学报, 2023, 44(7): 327106-327106. |
[8] | 何磊, 钱炜祺, 董康生, 易贤, 柴聪聪. 基于卷积神经网络的结冰翼型气动特性建模[J]. 航空学报, 2023, 44(5): 126434-126434. |
[9] | 冒国韬, 邓天民, 于楠晶. 基于多尺度分割注意力的无人机航拍图像目标检测算法[J]. 航空学报, 2023, 44(5): 326738-326738. |
[10] | 熊振宇, 崔亚奇, 董凯, 李孟洋, 熊伟. 基于属性引导的多源遥感舰船目标可解释融合关联网络[J]. 航空学报, 2023, 44(22): 627476-627476. |
[11] | 李晓航, 周建江. 基于自适应记忆长度的多尺度模态融合网络[J]. 航空学报, 2023, 44(22): 628977-628977. |
[12] | 李子豪, 王正平, 贺云涛. 基于自适应协同注意力机制的航拍密集小目标检测算法[J]. 航空学报, 2023, 44(13): 327944-327944. |
[13] | 王强, 吴乐天, 王勇, 王欢, 杨万扣. 基于关键点检测的红外弱小目标检测[J]. 航空学报, 2023, 44(10): 328173-328173. |
[14] | 薛远亮, 金国栋, 谭力宁, 许剑锟. 基于多尺度融合的自适应无人机目标跟踪算法[J]. 航空学报, 2023, 44(1): 326107-326107. |
[15] | 王子玲, 熊振宇, 顾祥岐. 可见光与SAR多源遥感图像关联学习算法[J]. 航空学报, 2022, 43(S1): 727239-727239. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学