航空学报 > 2024, Vol. 45 Issue (6): 629368-629368   doi: 10.7527/S1000-6893.2023.29368

飞行器新概念气动布局设计专栏

目标气动特性下动力翼参数影响分析与优化

孙蓬勃, 周洲(), 李旭, 王科雷   

  1. 西北工业大学 航空学院,西安 710072
  • 收稿日期:2023-07-26 修回日期:2023-08-24 接受日期:2023-09-15 出版日期:2024-03-25 发布日期:2023-09-21
  • 通讯作者: 周洲 E-mail:zhouzhou@nwpu.edu.cn
  • 基金资助:
    陕西省自然科学基础研究计划(2022JQ-060);装备预研项目(50911040803)

Influence analysis and optimization of distribution-propulsion-wing parameters with target aerodynamic characteristics

Pengbo SUN, Zhou ZHOU(), Xu LI, Kelei WANG   

  1. School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
  • Received:2023-07-26 Revised:2023-08-24 Accepted:2023-09-15 Online:2024-03-25 Published:2023-09-21
  • Contact: Zhou ZHOU E-mail:zhouzhou@nwpu.edu.cn
  • Supported by:
    Natural Science Foundation of Shaanxi Province(2022JQ-060);Equipment Pre-Research Project(50911040803)

摘要:

基于一种以弦向环量分布为目标的分布式动力翼(DPW)二维反设计方法,对比分析了在保持升力和俯仰力矩不变的条件下,动力翼涵道壁弦长和弦向位置对设计结果的影响;进一步以壁面阻力、桨盘入流总压损失和速度分布畸变最小为目标,开展了分布式动力翼二维外形优化设计。结果表明,反设计示例结果的弦向环量分布与目标值的平均相对误差为0.058 7;在涵道壁参数影响分析中,将同一弦向总环量分布作为反设计目标以保持相同的设计升力和俯仰力矩,当固定涵道壁弦长并使其弦向位置前移,或当固定涵道壁后缘位置并使其弦长增加时,动力翼的壁面阻力降低,升力系数随迎角变化斜率升高,俯仰力矩随迎角变化斜率由负变正;在优化分析中,优化后的二维动力翼涵道壁位置前移,壁面阻力系数下降了160%,同时桨盘入流总压基本没有损失,速度分布均匀性则进一步提高。

关键词: 环量分布, 分布式动力翼, 反设计, 参数影响, 气动优化

Abstract:

The influence of chord length and position on the design results of the Distribution-Propulsion-Wing (DPW) is compared at the same target lift and pitching moment, based on a two-dimensional inverse design method of the DPW aiming at chordwise circulation distribution. Additionally, the two-dimensional shape optimization design of the DPW is conducted to achieve minimum drag, minimum total pressure loss and minimum velocity distribution distortion of the disk inlet. The results show that the average relative error between the distribution of the chordwise circulation and the target value is 0.058 7 in the inverse design test. In the analysis of the duct parameter influence, a fixed chord length of the upper duct wall and a forward chord position, or a fixed trail edge position of the duct wall and a longer chord length lead to a lower surface drag and a higher lift coefficient slope, while the pitch moment slope changes from negative to positive as the angle of attack changes. After the optimization, the position of the two-dimensional DPW duct wall moves forward, the drag coefficient decreases by 160%, the total pressure of the disk inflow basically does not lose, and the velocity distribution uniformity is further increased.

Key words: circulation distribution, distributed-propulsion-wing, inverse design, parameter influence, aerodynamic optimization

中图分类号: