1 |
REEL J L, BALTADJIEV N D. Using computational fluid dynamics to generate complex aerodynamic database for VTOL aircraft[C]∥Proceedings of the 2018 Applied Aerodynamics Conference. Reston: AIAA, 2018.
|
2 |
KIM H D, PERRY A T, ANSELL P J. A review of distributed electric propulsion concepts for air vehicle technology[C]∥2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). Piscataway: IEEE Press, 2018: 1-21.
|
3 |
朱炳杰, 杨希祥, 宗建安, 等. 分布式混合电推进飞行器技术[J]. 航空学报, 2022, 43(7): 025556.
|
|
ZHU B J, YANG X X, ZONG J A, et al. Review of distributed hybrid electric propulsion aircraft technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 025556 (in Chinese).
|
4 |
KERHO M. Turboelectric distributed propulsion test bed aircraft: NASA LEARN Phase I Final report: NNX13AB9⁃2A[R]. El Segundo: Rolling Hills Research Corporation, 2013.
|
5 |
KERHO M. Turboelectric distributed propulsion test bed aircraft: NASA LEARN Phase Ⅱ Final report: NNX14AF44A[R]. El Segundo: Rolling Hills Research Corporation, 2015.
|
6 |
SCHILTGEN B, GREEN M, HALL D, et al. Split-wing propulsor design and analysis for electric distributed propulsion[C]∥Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011.
|
7 |
PAPATHAKIS V H. Inlet shape considerations for split-wing electric distributed propulsion[D]. San Luis Obispo: California Polytechnic State University, 2015: 20-63.
|
8 |
LAUER M G, ANSELL P J. A parametrization framework for multi-element airfoil systems using Bézier curves[C]∥Proceedings of the AIAA Aviation 2022 Forum. Reston: AIAA, 2022.
|
9 |
LAUER M G, ANSELL P J. Aerodynamic shape optimization of a transonic, propulsion-airframe-integrated airfoil system[C]∥Proceedings of the AIAA Aviation 2022 Forum. Reston: AIAA, 2022.
|
10 |
夏济宇, 周洲, 徐德, 等. 矢量电推进系统的气动-推进耦合模型[J]. 航空学报, 2023, 44(11): 140-152.
|
|
XIA J Y, ZHOU Z, XU D, et al. Aerodynamic/propulsion coupling model of vector electric propulsion system[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(11): 140-152 (in Chinese).
|
11 |
GUO J H, ZHOU Z. Multi-objective design of a distributed ducted fan system[J]. Aerospace, 2022, 9(3): 165.
|
12 |
王科雷, 周洲, 郭佳豪, 等. 分布式动力翼前飞状态动力/气动耦合特性分析[J]. 航空学报, 2024, 45(5): 128643.
|
|
WANG K L, ZHOU Z, GUO J H, et al. Analysis on the propulsive/aerodynamic coupled characteristics of the distributed-propulsion-wing during forward flight[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 128643 (in Chinese).
|
13 |
张星雨, 高正红, 雷涛, 等. 分布式电推进飞机气动-推进耦合特性地面试验[J]. 航空学报, 2022, 43(8): 125389.
|
|
ZHANG X Y, GAO Z H, LEI T, et al. Ground test on aerodynamic-propulsion coupling characteristics of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125389 (in Chinese).
|
14 |
KIM H J, RHO O H. Aerodynamic design of transonic wings using the target pressure optimization approach[J]. Journal of Aircraft, 1998, 35(5): 671-677.
|
15 |
ANDERSON J D. 空气动力学基础[M]. 5版. 杨永, 宋文萍, 张正科, 等, 译. 北京: 航空工业出版社, 2014: 319-338.
|
|
ANDERSON J D. Fundamentals of aerodynamics [M]. 5th ed. YANG Y, SONG W P, ZHANG Z K, et al, translated. Beijing: Aviation Industry Press, 2014: 319-338 (in Chinese).
|
16 |
KATZ J, PLOTKIN A. Low-speed aerodynamics[M]. Cambridge: Cambridge University Press, 2010:76-79, 284-288.
|
17 |
李旭, 周洲, 郭佳豪, 等. 二维射流中翼型气动特性计算与分析[J]. 西北工业大学学报, 2022, 40(2): 243-252.
|
|
LI X, ZHOU Z, GUO J H, et al. Calculation and analysis of aerodynamic characteristics for airfoils immersed in two-dimensional jet flow[J]. Journal of Northwestern Polytechnical University, 2022, 40(2): 243-252 (in Chinese).
|
18 |
SHOLLENBERGER C A. Analysis of the interaction of jets and airfoils in two dimensions[J]. Journal of Aircraft, 1973, 10(5): 267-273.
|
19 |
SHOLLENBERGER C A. An investigation of a two-dimensional propulsive lifting system: NASA- CR-2250 [R]. Washington, D.C.: NASA, 1973.
|
20 |
KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158.
|
21 |
LANE K, MARSHALL D. Inverse airfoil design utilizing CST parameterization[C]∥Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010.
|
22 |
GRUNWALD K J, GOODSON K W. Aerodynamic loads on an isolated shrouded-propeller configuration for angles of attack from-10 to 110: NASA TECHNICAL NOTE D-995[R]. Langley: NASA, 1962.
|
23 |
WU M M, HAN Z H, NIE H, et al. A transition prediction method for flow over airfoils based on high-order dynamic mode decomposition[J]. Chinese Journal of Aeronautics, 2019, 32(11): 2408-2421.
|
24 |
MALONE J B, NARRAMORE J C, SANKAR L N. Airfoil design method using the Navier-Stokes equations[J]. Journal of Aircraft, 1991, 28(3): 216-224.
|
25 |
张乐. 飞翼布局耦合进排气的气动与隐身综合设计研究[D]. 西安: 西北工业大学, 2016: 89-90.
|
|
ZHANG L. Research on integrated design of aerodynamic and stealthy performance with intake and exhaust for flying-wing layout[D]. Xi’an: Northwestern Polytechnical University, 2016: 89-90 (in Chinese).
|