1 |
GHOSH P, NASKAR K, DAS N C. Influence of synthetic graphite powder on tribological and thermo-mechanical properties of organic-inorganic hybrid fiber reinforced elastomer-modified phenolic resin friction composites[J]. Composites Part C: Open Access, 2020, 2: 100018.
|
2 |
刘圆圆, 郭慧, 刘韬, 等. 酚醛树脂基纳米多孔材料的制备及结构调控[J]. 航空学报, 2019, 40(5): 422654.
|
|
LIU Y Y, GUO H, LIU T, et al. Preparation and structure control of phenolic resin-based nanoporous materials[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 422654 (in Chinese).
|
3 |
NIU Z Q, CHEN B X, SHEN S, et al. Zirconium chelated hybrid phenolic resin with enhanced thermal and ablation resistance properties for thermal insulation composites[J]. Composites Communications, 2022, 35: 101284.
|
4 |
董金鑫, 朱召贤, 姚鸿俊, 等. 酚醛气凝胶/碳纤维复合材料的结构调控及性能研究[J]. 化工学报, 2018, 69(11): 4896-4901.
|
|
DONG J X, ZHU Z X, YAO H J, et al. Structural control and properties of phenolic aerogel/carbon fiber composites[J]. CIESC Journal, 2018, 69(11): 4896-4901 (in Chinese).
|
5 |
MERRITT B, SENECA M, LARSON S, et al. Measurements of the thermal conductivity of reference liquids using a modified transient hot-wire needle probe[J]. International Journal of Heat and Mass Transfer, 2022, 189: 122674.
|
6 |
KHALIFA D, JANNOT Y, DEGIOVANNI A, et al. Thermophysical characterization of mould materials using parallel hot wire and needle probe methods at high temperatures[J]. International Journal of Thermal Sciences, 2022, 179: 107630.
|
7 |
王泽林, 籍日添, 惠心雨, 等. 基于深度学习驱动的L型定向热疏导机理[J]. 航空学报, 2021, 42(6): 124242.
|
|
WANG Z L, JI R T, HUI X Y, et al. L-shaped directional heat transfer based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124242 (in Chinese).
|
8 |
TOURN B A, ÁLVAREZ HOSTOS J C, FACHINOT TI V D. A modified sequential gradient-based method for the inverse estimation of transient heat transfer coefficients in non-linear one-dimensional heat conduction problems[J]. International Communications in Heat and Mass Transfer, 2021, 127: 105488.
|
9 |
SANCHEZ-CAMARGO C M, HOR A, MABRU C. A robust inverse analysis method for elastoplastic behavior identification using the true geometry modeling of Berkovich indenter[J]. International Journal of Mechanical Sciences, 2020, 171: 105370.
|
10 |
兑红娜, 刘栋梁, 张志贤, 等. 基于应变测量的结构载荷分布反演方法[J]. 航空学报, 2021, 42(5): 524337.
|
|
DUI H N, LIU D L, ZHANG Z X, et al. Distributed load recovery approach based on strain measurements[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524337 (in Chinese).
|
11 |
周焕林, 徐兴盛, 李秀丽, 等. 反演二维瞬态热传导问题随温度变化的导热系数[J]. 应用数学和力学, 2014, 35(12): 1341-1351.
|
|
ZHOU H L, XU X S, LI X L, et al. Identification of temperature-dependent thermal conductivity for 2-D transient heat conduction problems[J]. Applied Mathematics and Mechanics, 2014, 35(12): 1341-1351 (in Chinese).
|
12 |
TAHMASBI V, NOORI S. Inverse identification of temperature-dependent thermal conductivity coefficients in an orthotropic charring composite[J]. Applied Thermal Engineering, 2021, 183: 116219.
|
13 |
LIU H, XIA X L, AI Q, et al. Experimental investigations on temperature-dependent effective thermal conductivity of nanoporous silica aerogel composite[J]. Experimental Thermal and Fluid Science, 2017, 84: 67-77.
|
14 |
姜贵庆, 马志强, 俞继军, 等. 新型防热涂层热导率的参数辩识[J]. 宇航材料工艺, 2008, 38(4): 11-13.
|
|
JIANG G Q, MA Z Q, YU J J, et al. Parameter identification of thermal conductivity coefficient for new type coating materials[J]. Aerospace Materials & Technology, 2008, 38(4): 11-13 (in Chinese).
|
15 |
XIE T, HE Y L, TONG Z X, et al. An inverse analysis to estimate the endothermic reaction parameters and physical properties of aerogel insulating material[J]. Applied Thermal Engineering, 2015, 87: 214-224.
|
16 |
张红军, 李海群, 康宏琳, 等. 纳米酚醛气凝胶材料高温热物性参数辨识方法[J]. 北京航空航天大学学报, 2023, 49(1): 92-99.
|
|
ZHANG H J, LI H Q, KANG H L, et al. High temperature thermal conductivity estimation method of inorganic-organic hybrid phenolic composites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(1): 92-99 (in Chinese).
|
17 |
林旭文, 高博, 易法军, 等. 烧蚀炭化热防护材料热导率的贝叶斯辨识方法[J]. 空天技术, 2022(3): 18-30, 70.
|
|
LIN X W, GAO B, YI F J, et al. Bayesian identification of thermal conductivity for charring ablative thermal protection materials[J]. Aerospace Technology, 2022(3): 18-30, 70 (in Chinese).
|
18 |
WANG X M, ZHANG L S, YANG C, et al. Estimation of temperature-dependent thermal conductivity and specific heat capacity for charring ablators[J]. International Journal of Heat and Mass Transfer, 2019, 129: 894-902.
|
19 |
POURGHOLI R, DANA H, TABASI S H. Solving an inverse heat conduction problem using genetic algorithm: Sequential and multi-core parallelization approach[J]. Applied Mathematical Modelling, 2014, 38(7-8): 1948-1958.
|
20 |
SAJEDI R, FARAJI J, KOWSARY F. A new damping strategy of Levenberg-Marquardt algorithm with a fuzzy method for inverse heat transfer problem parameter estimation[J]. International Communications in Heat and Mass Transfer, 2021, 126: 105433.
|
21 |
HAN W W, CHEN H B, LU T. Estimation of the time-dependent convective boundary condition in a horizontal pipe with thermal stratification based on inverse heat conduction problem[J]. International Journal of Heat and Mass Transfer, 2019, 132: 723-730.
|
22 |
ZHANG C Y, MEI J, BAI Y S, et al. Simultaneous identification of multi-parameter for power hardening elastoplastic problems in three-dimensional geometries[J]. Engineering Computations, 2022, 39(8): 2990-3011.
|
23 |
杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006.
|
|
YANG S M, TAO W Q. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006 (in Chinese).
|
24 |
CUI M, ZHAO Y, XU B B, et al. A new approach for determining damping factors in Levenberg-Marquardt algorithm for solving an inverse heat conduction problem[J]. International Journal of Heat and Mass Transfer, 2017, 107: 747-754.
|
25 |
ZHANG B W, MEI J, ZHANG C Y, et al. A general method for predicting the bank thickness of a smelting furnace with phase change[J]. Applied Thermal Engineering, 2019, 162: 114219.
|