收稿日期:
2023-12-13
修回日期:
2023-12-25
接受日期:
2024-01-16
出版日期:
2024-03-15
发布日期:
2024-01-17
通讯作者:
王海峰
E-mail:wanghf611@163.com
基金资助:
Received:
2023-12-13
Revised:
2023-12-25
Accepted:
2024-01-16
Online:
2024-03-15
Published:
2024-01-17
Contact:
Haifeng WANG
E-mail:wanghf611@163.com
摘要:
未来作战环境对战斗机提出了更高、更全面的性能需求,促使战斗机与发动机之间更深层次的耦合,在研制过程中开展更加紧密的协同设计。回顾多年来战斗机设计中飞/发双方为实现综合最优而共同努力的理论研究和实践历程,辨析提出飞/发协同设计理念。通过分析穿透性制空等作战需求,提出高性能战斗机的主要能力特征,探究面向未来的飞/发协同设计需求。从飞行性能、隐身特性、飞行控制、全机能量4个设计视角提出相应的关键技术,并给出可能的实现途径和设计研究建议。
中图分类号:
王海峰. 高性能战斗机与发动机协同设计关键技术[J]. 航空学报, 2024, 45(5): 529978-529978.
Haifeng WANG. Key technologies in collaborative airframe⁃engine design for high performance fighters[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529978-529978.
1 | SUTLIFF D. V/STOL airframe/propulsion integration problem areas[C]∥ ASME 1973 International Gas Turbine Conference and Products Show. New York: American Society of Mechanical Engineers. 1973. |
2 | MACE J, DOANE P. Integrated air vehicle/propulsion technology for a multirole fighter—A MCAIR perspective[C]∥ Proceedings of the 26th Joint Propulsion Conference. Reston: AIAA, 1990. |
3 | SANGHI V, KUMAR S K, SUNDARARAJAN V, et al. Engine-airframe integration during conceptual design for military application[J]. Journal of Aircraft, 1998, 35(3): 380-386. |
4 | O’ROURKE R. Renewed great power competition: Implications for defense—Issues for congress: R43838[R]. Washington, D.C.: Congressional Research Service, 2021. |
5 | DUNCAN J S. Pilot’s handbook of aeronautical knowledge: FAA-H-8083-25B[R]. Oklahoma: Airman Testing Standards Branch, Federal Aviation Administration, United States Department of Transportation, 2016. |
6 | PIERSON R K. The use of the wind channel for performance prediction[J]. The Journal of the Royal Aeronautical Society, 1928, 32(206): 96-126. |
7 | A.A.F. Erection and maintenance instructions for army models P-51D-5,-10,-15,-20,-25,P-51K-1,-5,-10,-15 British model Mustang IV airplanes: AN 01-60JE-2[R]. Washington, D.C.: A.A.F, 1944. |
8 | NICHOLSON L F. Engine-airframe integration[J]. The Journal of the Royal Aeronautical Society, 1957, 61(563): 711-726. |
9 | BUCKNELL R. STOVL engine/airframe integration[C]∥ Proceedings of the 23rd Joint Propulsion Conference. Reston: AIAA, 1987. |
10 | FOZARD J. The jet V/STOL Harrier—An evolutionary revolution in tactical air power[M]. Surrey: British Aerospace Aircraft Group Kingston-Brough Division, 1978: 1-8. |
11 | HIRSCHBERG M J. Soviet V/STOL aircraft: The struggle for a shipborne combat capability[M]. Reston: AIAA, 1997. |
12 | ROSS J. An integrated approach to V/STOL propulsion system development and testing[C]∥ Proceedings of the 2nd Aerodynamic Testing Conference. Reston: AIAA, 1966. |
13 | AGNEW J W. Correlation of F-15 flight and wind tunnel test control effectiveness[C]∥ North Atlantic Treaty Organization Advisory Group for Aerospace Research and Development. Agard Conference Proceedings of Aerodynamic Characteristics of Controls. Pozzuoli: Italian Air Force Academy,1979. |
14 | 高为民. 飞发一体化设计的关键技术[J]. 航空动力, 2018(2): 58-62. |
GAO W M. Key technology for aircraft/engine integration design[J]. Aerospace Power, 2018(2): 58-62 (in Chinese). | |
15 | RICHEY G K, SURBER L E, BERRIER B L. Airframe-propulsion integration for fighter aircraft[C]∥ Proceedings of the 21st Aerospace Sciences Meeting. Reston: AIAA, 1983. |
16 | ARONSTEIN D C, HIRSCHBERG M J, PICCIRILLO A C. Advanced tactical fighter to F-22 raptor: Origins of the 21st century air dominance fighter[M]. Reston: American Institute of Aeronautics and AIAA, 1998 |
17 | HERRICK P. Fighter aircraft/propulsion integration[C]∥ Proceedings of the Aircraft Systems, Design and Technology Meeting. Reston: AIAA, 1986. |
18 | KITOWSKI J. Fighter airframe/propulsion integration—A General Dynamics perspective[C]∥ Proceedings of the 28th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992. |
19 | MACE J, NYBERG G. Fighter airframe/propulsion integration—A McDonnell Aircraft perspective[C]∥ Proceedings of the 28th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992. |
20 | POWERS S, ROBINSON M. Fighter airframe/propulsion integration—A rockwell perspective[C]∥ Proceedings of the 28th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992. |
21 | LISTON G, SMALL L. Fighter airframe/propulsion integration—A Wright Laboratory perspective[C]∥ AIAA/SAE/ASME/ASEE 28th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992. |
22 | 罗志会, 王小平, 黄纯洲. 新一代飞机自适应动力与热管理系统研究[J]. 航空科学技术, 2012, 23(5): 38-41. |
LUO Z H, WANG X P, HUANG C Z. Adaptive power and thermal management system for new generation aircraft[J]. Aeronautical Science & Technology, 2012, 23(5): 38-41 (in Chinese). | |
23 | GRYNKEWICH A. An operational imperative: The future of air superiority[C]∥ Mitchell Institute Policy Papers. 2017. |
24 | MITCHELL W. Winged defense: The development and possibilities of modern air power-economic and military[M]. Tuscaloosa: University of Alabama Press, 2009. |
25 | TIRPAK J A. Piecing together the NGAD puzzle[J]. Air & Space Forces Magazine, 2022, 4: 1-8. |
26 | SELIGMAN L. Meet Boeing’s latest next-gen fighter concept[EB/OL].[2024-01-11]. . |
27 | Grumman Northrop. Just wait[EB/OL]. (2016-02-08)[2024-01-11]. . |
28 | Norris Guy. Skunk works unveils updated next-gen fighter concept[EB/OL]. (2017-06-06)[2024-01-11]. . |
29 | RAYMER D. Aircraft design: a conceptual approach, sixth edition[M]. Washington, D.C.: AIAA, Inc., 2018. |
30 | 日本経済新聞社. 次期戦闘機のF22改良版、日本が過半生産[EB/OL]. (2018-8-23)[2024-01-11]. . |
31 | Sugiyama Kentaro. MDAO for conceptual aircraft design at northrop grumman[EB/OL]. (2019-02-21)[2024-01-11]. . |
32 | ORME J S, CONNERS T R. Supersonic flight test results of a performance seeking control algorithm on a NASA F-15 aircraft[C]∥ 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. 1994. |
33 | 晏武英, 谭米. 美国自适应发动机技术转化应用前瞻[J]. 航空动力, 2021(6): 18-22. |
YAN W Y, TAN M. Foresight of U.S. Adaptive engine technology transformation[J]. Aerospace Power, 2021(6): 18-22 (in Chinese). | |
34 | 亚历山大·尼古拉耶维奇·达维坚科, 米哈伊尔·尤里耶维奇·斯特雷勒茨, 弗拉迪米尔·亚历山德罗维奇·鲁尼舍夫, 等. 可调整的超音速进气道: CN103748337B[P]. 2016-08-17. |
NIKOLAEVICH A, YURIEVICH S M, ALEKSANDR- OVICH R V, et al. Adjustable supersonic air inlet: CN103748337B[P]. 2016-08-17 (in Chinese). | |
35 | 方宝瑞. 飞机气动布局设计[M]. 北京: 航空工业出版社, 1997. |
FANG B R. Aerodynamic layout design of aircraft[M]. Beijing: Aviation Industry Press, 1997 (in Chinese). | |
36 | 贾琳渊. 变循环发动机控制规律设计方法研究[D]. 西安: 西北工业大学, 2017. |
JIA L Y. Research on variable cycle engine control schedule design[D].Xi’an: Northwestern Polytechnical University, 2017 (in Chinese). | |
37 | 孙鹏,周莉,王占学,等 . 双涵道S 弯喷管内/ 外流场的温度分布研究[J]. 西北工业大学学报, 2021, 39 (6):1331-1339 |
SUN, ZHOU L, WANG Z X,et al . Temperature distributions of internal flow and external jet fields of double serpentine convergent nozzle for turbofan[J]. Journal of Northwestern Polytechnical University, 2021, 39 (6): 1331-1339 (in Chinese). | |
38 | 孙鹏, 周莉, 王占学, 等. 双S弯喷管的流固耦合特性研究[J]. 推进技术, 2022, 43(10): 158-167. |
SUN P, ZHOU L, WANG Z X, et al. Fluid-structure interaction characteristic of double serpentine nozzle[J]. Journal of Propulsion Technology, 2022, 43(10): 158-167 (in Chinese). | |
39 | Марчуков Евгений Ювенальевич,Привалов Виталий Николаевич,Чепкин Виктор Михайлович. ПЛОСКОЕ СОПЛО ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ: RU 238376 C1[P] (in Russian). |
40 | MATTINGLY J D, HEISER W H, PRATT D T. Aircraft engine design [M]. 2nd ed.Reston: AIAA, 2002. |
41 | 王浩. 低红外特征涡扇发动机总体设计若干问题研究[D]. 南京: 南京航空航天大学,2020. |
WANG H. Research on some problems of overall design of low infrared characteristic turbofan engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese). | |
42 | FlightGlobal. F-22 Raptor in action at Farnborough Air Show[EB/OL]. (2010-7-20)[2024-01-11]. . |
43 | 斯仁. 飞行器红外隐身设计评估软件及二元喷管隐身技术研究[D]. 南京: 南京航空航天大学,2015. |
SI R. Research on infrared stealth design evaluation software for aircraft and dual nozzle stealth technology[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015 (in Chinese). | |
44 | MAIER M S, GAMBLE E J, WILSON J W, et al. Nacelle air pump for vector nozzles for aircraft: US5593112[P]. 1997-01-14. |
45 | 有人驾驶飞机(固定翼)飞行品质: [S].2004. |
Piloted aircraft (fixed wing) flight quality: [S]. 2004. | |
46 | NGUYEN L T, OGBURN MARILYN E, GILBERT WILLIAM P, et al. Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability: NASA-79-TP-1538[R]. Hampton: National Aeronautics and Space Administration Scientific and Technical Information Branch, 1979. |
47 | 韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008: 239. |
HAN J Q. Active disturbance rejection control technique[M]. Beijing: National Defense Industry Press, 2008: 239 (in Chinese). | |
48 | MASHINA B. Thrust vectoring nozzles of lockheed martin F-22 raptor[EB/OL]. (2022-8-27)[2024-01-11]. . |
49 | 肖中云, 江雄, 牟斌, 等. 流体推力矢量技术研究综述[J]. 实验流体力学, 2017, 31(4): 8-15. |
XIAO Z Y, JIANG X, MOU B, et al. Advances influidic thrust vectoring technique research[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 8-15 (in Chinese). | |
50 | 顾瑞. 新型双喉道气动矢量喷管机理与关键技术研究[D]. 南京: 南京航空航天大学, 2013. |
GU R. Research on the key technology of new dual throat fluidic vectoring thrust nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese). | |
51 | 徐惊雷, 黄帅, 潘睿丰. 双喉道气动推力矢量喷管的现状及将来[J]. 航空动力, 2023(2): 67-70. |
XU J L, HUANG S, PAN R F. Research status and development trend of dual throat fluidic thrust vectoring nozzle[J]. Aerospace Power, 2023(2): 67-70 (in Chinese). | |
52 | STEVEN M. Integrated Vehicle Energy Technology (INVENT) overview[C]∥ IEEE 2012 Annual Meeting. Cincinnati: Air Force Research Laboratory, 2012. |
53 | 付盛杰. F-22“猛禽” 典型第四代战斗机[M]. 北京: 蓝天出版社, 1999. |
FU S J. F-22 Raptor is a typical fourth-generation fighter[M]. Beijing: Blue Sky Press, 1999 (in Chinese). | |
54 | 罗志会, 李胜全, 黄纯洲. 下一代飞机热管理技术的研究热点[J]. 航空科学技术, 2015, 26(8): 6-12. |
LUO Z H, LI S Q, HUANG C Z. Highlights of next generation aircraft thermal management technology[J]. Aeronautical Science & Technology, 2015, 26(8): 6-12 (in Chinese). |
[1] | 崔壮壮, 原昕, 赵国庆, 井思梦, 招启军. 共轴刚性旋翼高速直升机前飞性能操纵策略影响[J]. 航空学报, 2024, 45(9): 529256-529256. |
[2] | 刘昌昊, 曹义华, 梅晓萌, 汪茂胜, 张广林. 高速直升机运输效能评估[J]. 航空学报, 2024, 45(9): 530182-530182. |
[3] | 张卫国, 唐敏, 武杰, 彭先敏, 章贵川, 聂博文, 王亮权, 李超群. 倾转旋翼机风洞试验综述[J]. 航空学报, 2024, 45(9): 530114-530114. |
[4] | 滕俊飞, 李家豪, 周惠焱, 伍大为, 徐海涛, 林铁松, 黄永德. TLP扩散焊接工艺参数对GH5188高温合金接头微观组织及力学性能的影响[J]. 航空学报, 2024, 45(8): 429205-429205. |
[5] | 樊哲铭, 杨未柱, 曾延, 赵哲南, 李磊. 激光熔覆修复GH4169合金各向异性拉伸性能[J]. 航空学报, 2024, 45(8): 429129-429129. |
[6] | 乔竑玮, 梁剑寒, 张林, 孙明波, 陈玉俏. 超声速燃烧中的概率密度函数方法研究进展[J]. 航空学报, 2024, 45(8): 28802-028802. |
[7] | 刘钟琦, 胡旭阳, 罗海宁, 王晓明, 董素君. 战斗机驾驶舱环境热舒适性仿真与优化[J]. 航空学报, 2024, 45(7): 128919-128919. |
[8] | 王革, 王志邦, 王富祺, 关奔, 王立民, 宁浩然. 节流式燃/氧分离发动机准一维内弹道数值研究[J]. 航空学报, 2024, 45(7): 129111-129111. |
[9] | 尹泽勇, 李概奇, 石建成, 银越千. 先进通用核心机派生发展的理念、方法及实践[J]. 航空学报, 2024, 45(7): 29713-029713. |
[10] | 罗旭东, 吴一全, 陈金林. 无人机航拍影像目标检测与语义分割的深度学习方法研究进展[J]. 航空学报, 2024, 45(6): 28822-028822. |
[11] | 黄维娜, 黎方娟, 祁宏斌. 航空发动机数字工程初步研究与发展思考[J]. 航空学报, 2024, 45(5): 529693-529693. |
[12] | 齐国宁, 吴宝海, 符江锋. 高速高压燃油齿轮泵典型卸荷槽对比分析[J]. 航空学报, 2024, 45(5): 529666-529666. |
[13] | 刘小勇, 王明福, 刘建文, 任鑫, 张轩. 超燃冲压发动机研究回顾与展望[J]. 航空学报, 2024, 45(5): 529878-529878. |
[14] | 张卫红, 唐长红. 航空航天装备的轻量化:挑战与未来[J]. 航空学报, 2024, 45(5): 529965-529965. |
[15] | 杨卫平. 新一代飞行器导航制导与控制技术发展趋势[J]. 航空学报, 2024, 45(5): 529720-529720. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学