航空学报 > 2024, Vol. 45 Issue (3): 328685-328685   doi: 10.7527/S1000-6893.2023.28685

基于DRSN与电压幅值分析的航空HVDC系统逆变器故障诊断

黄湛钧(), 董鑫, 卢沐宇, 张瑞涛, 闫钊阳, 张安   

  1. 西北工业大学 航空学院,西安  710072
  • 收稿日期:2023-03-13 修回日期:2023-06-06 接受日期:2023-07-25 出版日期:2024-02-15 发布日期:2023-08-11
  • 通讯作者: 黄湛钧 E-mail:zhanjun_h@163.com
  • 基金资助:
    国家自然科学基金(62003274);中央高校基本科研任务(G2020KY05110)

Fault diagnosis of inverter of aviation HVDC sysytem based on DRSN and voltage amplitude analysis

Zhanjun HUANG(), Xin DONG, Muyu LU, Ruitao ZHANG, Zhaoyang YAN, An ZHANG   

  1. College of Aviation,Northwestern Polytechnical University,Xi’an  710072,China
  • Received:2023-03-13 Revised:2023-06-06 Accepted:2023-07-25 Online:2024-02-15 Published:2023-08-11
  • Contact: Zhanjun HUANG E-mail:zhanjun_h@163.com
  • Supported by:
    National Natural Science Foundation of China(62003274);the Fundamental Research Funds for the Central Universities(G2020KY05110)

摘要:

机载270 V高压直流(HVDC)系统的故障诊断一直是航电领域中的一个难点问题,为此提出了基于深度残差收缩网络(DRSN)的故障模块识别算法与基于线电压幅值分析的故障器件定位算法。首先对系统总电流进行采集,并进行差值标准化处理获得特征数据;根据特征数据的特点,利用Flatten层对原有DRSN结构进行改进,来提高算法对故障模块的识别精度。在确定系统逆变模块故障之后,利用两相线电压之比确定出故障相,再利用线电压均值模型确定故障器件。相比于现有方法,所提方法仅使用1个电流传感器和2个电压传感器便实现了系统故障诊断,满足了飞机对重量的限制要求。实验证明:所提出的方法故障模块识别精度,以及故障器件定位精度可达97%以上,具有较好实用性。

关键词: 270 V HVDC系统, 深度残差收缩网络, 线电压幅值分析, 故障诊断, 故障模块识别

Abstract:

The fault diagnosis of the airborne 270 V high-voltage direct current (HVDC) system has always been a difficult problem in the field of avionics. Therefore, a fault module identification algorithm based on deep residual contraction network (DRSN) and a fault component localization algorithm based on line voltage amplitude analysis have been proposed. Firstly, the total current of the system is collected, and the difference is standardized to obtain characteristic data. Based on the feature data, the Flatten layer is used to improve the original DRSN structure, so as to improve the algorithm recognition accuracy for fault modules. After determining the fault of the system inverter module, the fault phase is determined using the ratio of the two phase line-voltages, and then the fault device is determined using the average line-voltage model. Compared to existing methods, the proposed method only uses one current sensor and two voltage sensors to achieve system fault diagnosis, meeting the weight limitation requirements of aircraft. The experiment proves that the proposed method has good practicality in identifying fault modules and locating fault components with an accuracy of over 97%.

Key words: 270 V HVDC system, deep residual shrinkage network, line voltage amplitude analysis, fault diagnosis, fault module identification

中图分类号: