收稿日期:
2023-07-12
修回日期:
2023-07-27
接受日期:
2023-09-20
出版日期:
2024-05-25
发布日期:
2023-10-08
通讯作者:
杨迪
E-mail:yangdi0518@hotmail.com
Qian YANG, Yanzhe WANG, Di YANG(), Zezhong LI, Weiwei QU
Received:
2023-07-12
Revised:
2023-07-27
Accepted:
2023-09-20
Online:
2024-05-25
Published:
2023-10-08
Contact:
Di YANG
E-mail:yangdi0518@hotmail.com
摘要:
复合材料自动铺放(AFP)过程中,铺放速度的突变极易引起丝束翻折、褶皱、滑移等缺陷,从而降低铺放质量和铺放效率。基于铺放速度的预测结果进行优化调整,是提高铺放速度稳定性、保障铺放质量的重要途径。为此,提出一种基于数据驱动的铺丝机速度预测及规划方法。首先,基于随机森林方法,建立了以铺丝机运动轴为子树的铺放速度预测模型,提出以关节标称速度、加速度、关节轨迹夹角为输入特征,以关节实际速度为输出特征的随机森林模型特征参数定义方法;进一步,基于铺放速度预测结果分析,提出了指令速度的分段匀速规划方法;最后,给出了参考指令速度的制造周期预估方法。采用六自由度卧式机床的进气道铺放实验对上述方法进行验证。结果表明,该方法对同训练角度铺层铺放速度的预测准确度达到91%,随着学习数据增加,各角度铺层路径的速度预测精度均有提升。采用基于铺放速度预测结果的指令速度分段规划方法,可显著降低速度突变,有效提升铺放质量。在计算成本方面,通过与神经网络方法相比,证明了随机森林方法具备高效的铺放速度预测水平。
中图分类号:
杨倩, 王彦哲, 杨迪, 李泽众, 曲巍崴. 基于数据驱动的纤维增强复合材料自动铺放速度预测与规划[J]. 航空学报, 2024, 45(10): 429313-429313.
Qian YANG, Yanzhe WANG, Di YANG, Zezhong LI, Weiwei QU. Prediction and planning of automatic laying speed for fiber reinforced composite materials based on data⁃driven model[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 429313-429313.
1 | 牛春匀. 实用飞机复合材料结构设计与制造[M]. 程小全,张纪奎, 译. 北京: 航空工业出版社, 2010: 20-25. |
NIU C Y. Design and manufacturing of practical aircraft composite structure[M]. CHENG X Q, ZHANG J K, translated. Beijing: Aviation Industry Press, 2010: 20-25 (in Chinese). | |
2 | 古托夫斯基 T G. 先进复合材料制造技术[M]. 李宏运,译. 北京: 化工工业出版社, 2004: 30-36. |
GUTOWSKI T G. Advanced composite material manufacturing technology[M]. LI H Y, translated. Beijing: Chemical Industry Press, 2004: 30-36 (in Chinese). | |
3 | 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12. |
DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12 (in Chinese). | |
4 | FREEMAN W T. The use of composites in aircraft primary structure[J]. Composites Engineering, 1993, 3(7-8): 767-775. |
5 | 贾振元, 肖军, 湛利华, 等. 大型航空复合材料承力构件制造关键技术[J]. 中国基础科学, 2019, 21(2): 20-27. |
JIA Z Y, XIAO J, ZHAN L H, et al. Research of large aviation and loading-bearing composite components manufacturing[J]. China Basic Science, 2019, 21(2): 20-27 (in Chinese). | |
6 | 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1): 1-10. |
DU S Y, GUAN Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1): 1-10 (in Chinese). | |
7 | DHINAKARAN V, SURENDAR K V, HASUNFUR RIYAZ M S, et al. Review on study of thermosetting and thermoplastic materials in the automated fiber placement process[J]. Materials Today: Proceedings, 2020, 27: 812-815. |
8 | 肖军, 李勇, 文立伟, 等. 树脂基复合材料自动铺放技术进展[J]. 中国材料进展, 2009, 28(6): 28-32. |
XIAO J, LI Y, WEN L W, et al. Progress of automated placement technology for polymer composites[J]. Materials China, 2009, 28(6): 28-32 (in Chinese). | |
9 | FRKETIC J, DICKENS T, RAMAKRISHNAN S. Automated manufacturing and processing of fiber-reinforced polymer (FRP) composites: An additive review of contemporary and modern techniques for advanced materials manufacturing[J]. Additive Manufacturing, 2017, 14: 69-86. |
10 | KOZACZUK K. Automated fiber placement systems overview[J]. Transactionsofthe Institute of Aviation, 2016, 245(4): 52-59. |
11 | 方宜武. 基于测地线算法的复合材料翼梁自动铺丝技术研究[D]. 南京: 南京航空航天大学, 2014: 15-20. |
FANG Y W. Research on automated fiber placement technology of composite wing spar based on geodesic algorithm[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 15-20 (in Chinese). | |
12 | 文立伟, 肖军, 王显峰, 等. 中国复合材料自动铺放技术研究进展[J]. 南京航空航天大学学报, 2015, 47(5): 637-649. |
WEN L W, XIAO J, WANG X F, et al. Progress of automated placement technology for composites in China[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(5): 637-649 (in Chinese). | |
13 | 张建宝, 赵文宇, 王俊锋, 等. 复合材料自动铺放工艺技术研究现状[J]. 航空制造技术, 2014, 57(16): 80-83, 94. |
ZHANG J B, ZHAO W Y, WANG J F, et al. Research status of automated placement processing technology of composites[J]. Aeronautical Manufacturing Technology, 2014, 57(16): 80-83, 94 (in Chinese). | |
14 | DENKENA B, SCHMIDT C, WEBER P. Automated fiber placement head for manufacturing of innovative aerospace stiffening structures[J]. Procedia Manufacturing, 2016, 6: 96-104. |
15 | 肖海涛. 面向五轴数控加工的刀具位姿优化及线性插补算法研究[D]. 杭州: 浙江大学, 2019: 83-117. |
XIAO H T. Research on optimization and linear interpolation of CL data for five-axis CNC machining[D]. Hangzhou: Zhejiang University, 2019: 83-117 (in Chinese). | |
16 | ERKORKMAZ K, YEUNG C H, ALTINTAS Y. Virtual CNC system. Part II. High speed contouring application[J]. International Journal of Machine Tools and Manufacture, 2006, 46(10): 1124-1138. |
17 | TULSYAN S. Prediction and reduction of cycle time for five-axis CNC machine tools[D]. Vancouver: University of British Columbia, 2014: 63-110. |
18 | LIN M T, TSAI M S, YAU H T. Development of a dynamics-based NURBS interpolator with real-time look-ahead algorithm[J]. International Journal of Machine Tools and Manufacture, 2007, 47(15): 2246-2262. |
19 | BEUDAERT X, LAVERNHE S, TOURNIER C. Feedrate interpolation with axis jerk constraints on 5-axis NURBS and G1 tool path[J]. International Journal of Machine Tools and Manufacture, 2012, 57: 73-82. |
20 | 张盼盼, 吴凤彪, 张子英. 高精度数控机床非均匀有理B样条曲线插补控制研究[J]. 机械制造, 2020, 58(3): 59-61, 70. |
ZHANG P P, WU F B, ZHANG Z Y. Research on interpolation control of non-uniform rational B-spline curve of high precision CNC machine tool[J]. Machinery, 2020, 58(3): 59-61, 70 (in Chinese). | |
21 | 何文杰. 五轴双NURBS刀具路径拟合及其插补算法研究[D]. 合肥: 合肥工业大学, 2018: 23-104. |
HE W J. Study on five-axis dual NURBS tool path fitting and its interpolation algorithm[D]. Hefei: Hefei University of Technology, 2018: 23-104 (in Chinese). | |
22 | 宁志豪, 周璐雨, 陈豪文. 浅谈机器学习与深度学习的概要及应用[J]. 科技风, 2019(15): 19. |
NING Z H, ZHOU L Y, CHEN H W. Brief introduction and application of machine learning and deep learning[J]. Technology Wind, 2019(15): 19 (in Chinese). | |
23 | HORNIK K. Approximation capabilities of multilayer feedforward networks[J]. Neural Networks, 1991, 4(2): 251-257. |
24 | CHEN S, BILLINGS S A. Neural networks for nonlinear dynamic system modelling and identification[J]. International Journal of Control, 1992, 56(2): 319-346. |
25 | SUN C, DOMINGUEZ-CABALLERO J, WARD R, et al. Machining cycle time prediction: Data-driven modelling of machine tool feedrate behavior with neural networks[J]. Robotics and Computer-Integrated Manufacturing, 2022, 75: 102293. |
26 | 张煜东, 吴乐南, 吴含前. 工程优化问题中神经网络与进化算法的比较[J]. 计算机工程与应用, 2009, 45(3): 1-6. |
ZHANG Y D, WU L N, WU H Q. Comparison of neural network and evolutionary algorithm on engineering optimization[J]. Computer Engineering and Applications, 2009, 45(3): 1-6 (in Chinese). | |
27 | LOH W Y. Classification and regression trees[J]. WIREs Data Mining and Knowledge Discovery, 2011, 1(1): 14-23. |
28 | ALPAYDIN E. Introduction to machine learning[M]. 3rd ed. Boston: MIT Press, 2014: 21-63. |
29 | BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140. |
30 | LIAW A, WIENER M. Classification and regression by randomForest[J]. R news, 2002, 2(3): 18-22. |
31 | PETERS J, DE BAETS B, VERHOEST N E C, et al. Random forests as a tool for ecohydrological distribution modelling[J]. Ecological Modelling, 2007, 207(2-4): 304-318. |
32 | 李艳, 李英浩, 高峰, 等. 基于互信息法和改进模糊聚类的温度测点优化[J]. 仪器仪表学报, 2015, 36(11): 2466-2472. |
LI Y, LI Y H, GAO F, et al. Investigation on optimization of temperature measurement key points based on mutual information and improved fuzzy clustering analysis[J]. Chinese Journal of Scientific Instrument, 2015, 36(11): 2466-2472 (in Chinese). | |
33 | CRAIG J J. 机器人学导论[M]. 贠超, 译. 北京: 机械工业出版社, 2018: 55-120 |
CRAIG J J. Introduction to robotics[M]. YUN C, translated.Beijing: China Machine Press, 2018: 55-120 (in Chinese). | |
34 | LI L N, WANG X G, XU D, et al. A placement path planning algorithm based on meshed triangles for carbon fiber reinforce composite component with revolved shape[J]. International Journal on Control Systems and Applications, 2014, 1(1): 23-32. |
[1] | 龚煜廉, 张建国, 吴志刚, 褚光远, 范晓铎, 黄赢. 主动学习基自适应PC⁃Kriging模型的复合材料结构可靠度算法[J]. 航空学报, 2024, 45(8): 228982-228982. |
[2] | 贾文斌, 方磊, 张根, 史剑, 何泽侃, 宣海军. CNT树脂基复合材料断裂韧性的优化设计[J]. 航空学报, 2024, 45(7): 428971-428971. |
[3] | 张春云, 陈雄斌, 刘健, 崔苗. 酚醛树脂气凝胶复合材料热物性参数预测方法[J]. 航空学报, 2024, 45(6): 428848-428848. |
[4] | 黄领才. 纤维增强聚合物复合材料无损检测方法进展[J]. 航空学报, 2024, 45(5): 529697-529697. |
[5] | 高志廷, 马壮, 柳彦博. CVD-SiC阵列结构对ZrB2/SiC涂层抗烧蚀性影响[J]. 航空学报, 2024, 45(3): 428842-428842. |
[6] | 张超, 曹勇, 赵振强, 张海洋, 孙建波, 王志华, 蔚夺魁. 树脂基复合材料在民用航空发动机中的应用与关键技术研究进展[J]. 航空学报, 2024, 45(2): 28556-028556. |
[7] | 马莹, 陈奡, 邓聪颖, 陈翔, 禄盛, 曾宪君. 纺织复合材料多尺度网格划分方法[J]. 航空学报, 2024, 45(10): 429180-429180. |
[8] | 甘纪强, 王小平. 基于虚拟样本生成的铺丝表面缺陷检测[J]. 航空学报, 2024, 45(1): 428624-428624. |
[9] | 王宏越, 王兵, 方国东, 孟松鹤. 2.5D机织浅交弯联复合材料数字单元建模分析[J]. 航空学报, 2023, 44(9): 227478-227478. |
[10] | 韩剑, 孙士勇, 牛斌, 杨睿, 吴东江. 树脂基复合材料点阵结构的制造技术研究进展[J]. 航空学报, 2023, 44(9): 628255-628255. |
[11] | 刘礼平, 齐雨阳, 蔺越国, 鲍蕊, 徐建新, 冯振宇, 卿光辉. 碳纤维复合材料胶铆混合修理结构静载拉伸失效[J]. 航空学报, 2023, 44(24): 428676-428676. |
[12] | 刘瑞峰, 孙晓哲, 李文辉, 王显, 闫杰. 高频脉冲电流改性SiC/Al复合材料微裂纹愈合机制及组织性能[J]. 航空学报, 2023, 44(22): 428598-428598. |
[13] | 张得礼, 秦峥, 刘哲, 李明, 何凯. 航空发动机复合材料叶片切削加工智能装夹系统[J]. 航空学报, 2023, 44(20): 428987-428987. |
[14] | 杨钧超, 王雪明, 陈向明, 邹鹏, 王喆. 低速冲击损伤对复材加筋板压缩性能的影响[J]. 航空学报, 2023, 44(20): 228498-228498. |
[15] | 孙洋, 黄建, 韩晨晨, 赵振强, 周海丽, 孙方方, 李超, 张超, 张立泉. 二维与三维机织复合材料面内力学性能对比[J]. 航空学报, 2023, 44(18): 428267-428267. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 113
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学