1 |
戈晶晶. 屈贤明:“十四五”中国制造还需攻克“卡脖子”技术[J]. 中国信息界, 2020(3): 12-16.
|
|
GE J J. Qu Xianming: The “14th Five-Year Plan” China manufacturing still needs to overcome the “stuck neck” technology[J]. Information China, 2020(3): 12-16 (in Chinese).
|
2 |
郑建军, 唐吉运, 王彬文. C919飞机全机静力试验技术[J]. 航空学报, 2019, 40(1): 522364.
|
|
ZHENG J J, TANG J Y, WANG B W. Static test technology for C919 full-scale aircraft structure[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522364 (in Chinese).
|
3 |
王彬文, 段世慧, 聂小华, 等. 航空结构分析CAE软件发展现状与未来挑战[J]. 航空学报, 2022, 43(6): 527272.
|
|
WANG B W, DUAN S H, NIE X H, et al. Development situation and future challenges of CAE software used in aeronautical structural analysis[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 527272 (in Chinese).
|
4 |
闫楚良. 中国飞机结构寿命可靠性评定技术的发展与展望[J]. 航空学报, 2022, 43(10): 527869.
|
|
YAN C L. Development and prospect of aircraft structural life reliability assessment technology in China[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527869 (in Chinese).
|
5 |
潮群. EHA轴向柱塞泵高速化若干关键技术研究[D]. 杭州: 浙江大学, 2019: 1-3.
|
|
CHAO Q. Research on some key technologies of high-speed rotation for axial piston pumps used in EHAs[D]. Hangzhou: Zhejiang University, 2019: 1-3 (in Chinese).
|
6 |
张宇佳, 左光, 徐艺哲, 等. Starship新型舵面形式气动特性数值模拟[J]. 航空学报, 2021, 42(2): 624058.
|
|
ZHANG Y J, ZUO G, XU Y Z, et al. Numerical simulation on aerodynamic characteristics of new type control surface of Starship[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 624058 (in Chinese).
|
7 |
王磊, 王立新, 贾重任. 飞翼布局飞机开裂式方向舵的作用特性和使用特点[J]. 航空学报, 2011, 32(8): 1392-1399.
|
|
WANG L, WANG L X, JIA Z R. Control features and application characteristics of split drag rudder utilized by flying wing[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1392-1399 (in Chinese).
|
8 |
陈剑, 邓支强, 乔晋红. 飞机舵面液压助力器及舵面系统建模与性能仿真[J]. 中国机械工程, 2017, 28(7): 800-805.
|
|
CHEN J, DENG Z Q, QIAO J H. Aircraft hydraulic booster and rudder system modeling and performance simulation[J]. China Mechanical Engineering, 2017, 28(7): 800-805 (in Chinese).
|
9 |
李壮云. 液压元件与系统[M]. 3版. 北京: 机械工业出版社, 2011: 68-69.
|
|
LI Z Y. Hydraulic components and systems[M]. 3rd ed. Beijing: China Machine Press, 2011: 68-69 (in Chinese).
|
10 |
ZHANG Z T, CAO S P, WANG H W,et al. The approach on reducing the pressure pulsation and vibration of seawater piston pump through integrating a group of accumulators[J]. Ocean Engineering, 2019, 173: 319-330.
|
11 |
许贤良, 邓海顺. 流量均匀、液压力平衡的轴向柱塞泵理论研究[J]. 液压与气动, 2011(1): 88-90.
|
|
XU X L, DENG H S. Theory study of axial piston pump with uniform flow and pressure balanced[J]. Chinese Hydraulics & Pneumatics, 2011(1): 88-90 (in Chinese).
|
12 |
YIN F L, NIE S L, XIAO S H, et al. Numerical and experimental study of cavitation performance in sea water hydraulic axial piston pump[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2016, 230(8): 716-735.
|
13 |
ZHANG B, MA J E, HONG H C, et al. Analysis of the flow dynamics characteristics of an axial piston pump based on the computational fluid dynamics method[J]. Engineering Applications of Computational Fluid Mechanics, 2017, 11(1): 86-95.
|
14 |
GUAN C B, JIAO Z X, HE S Z. Theoretical study of flow ripple for an aviation axial-piston pump with damping holes in the valve plate[J]. Chinese Journal of Aeronautics, 2014, 27(1): 169-181.
|
15 |
KOLLEK W, KUDŹMA Z, STOSIAK M, et al. Possibilities of diagnosing cavitation in hydraulic systems[J]. Archives of Civil and Mechanical Engineering, 2007, 7(1): 61-73.
|
16 |
刘春节, 吴小锋, 干为民, 等. 基于全空化模型的柱塞泵内空化流动数值模拟[J]. 中国机械工程, 2015, 26(24): 3341-3347.
|
|
LIU C J, WU X F, GAN W M, et al. Numerical simulation of cavitation flow in piston pump based on full cavitation model[J]. China Mechanical Engineering, 2015, 26(24): 3341-3347 (in Chinese).
|
17 |
LIPPPMANN G. Action de forces extérieures sur la tension des vapeurs saturées et des gaz dissous dans un liquide[J]. Journal de Physique Théorique et Appliquée, 1911, 1(1): 261-264.
|
18 |
YAMAGUCHI A, TAKABE T. Cavitation in an axial piston pump[J]. Bulletin of JSME, 1983, 26(211): 72-78.
|
19 |
TSUKIJI T, TAKASE T, NOGUCHI E. Visualization analysis of cavitating jet flow issuing from notch in an axial piston pump[J]. Transactions of the Japan Fluid Power System Society, 2011, 42(1): 7-12.
|
20 |
刘晓红, 于兰英, 刘桓龙, 等. 高压轴向柱塞泵配流空蚀特性的评价[J]. 机械科学与技术, 2008, 27(3): 416-420.
|
|
LIU X H, YU L Y, LIU H L, et al. Evaluation of cavitation erosion characteristics in port process of a high-pressure axial plunger pump[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(3): 416-420 (in Chinese).
|
21 |
MANRING N D, MEHTA V S, NELSON B E, et al. Scaling the speed limitations for axial-piston swash-plate type hydrostatic machines[J]. Journal of Dynamic Systems, Measurement, and Control, 2014, 136(3): 031004.
|
22 |
KUNKIS M, WEBER J. Experimental and numerical assessment of an axial piston pump’s speed limit[C]∥Proceedings of BATH/ASME 2016 Symposium on Fluid Power and Motion Control. New York: ASME, 2016.
|
23 |
CHAO Q, ZHANG J H, XU B, et al. Effects of inclined cylinder ports on gaseous cavitation of high-speed electro-hydrostatic actuator pumps:A numerical study[J]. Engineering Applications of Computational Fluid Mechanics, 2019, 13(1): 245-253.
|
24 |
BISHOP R J, TOTTEN G E. Effect of pump inlet conditions on hydraulic pump cavitation: A review[M]∥Hydraulic Failure Analysis: Fluids, Components, and System Effects. West Conshohocken: ASTM International, 2008: 318-332.
|
25 |
BÜGENER N, KLECKER J, WEBER J. Analysis and improvement of the suction performance of axial piston pumps in swash plate design[J]. International Journal of Fluid Power, 2014, 15(3): 153-167.
|
26 |
IANNETTI A, STICKLAND M T, DEMPSTER W M. A CFD and experimental study on cavitation in positive displacement pumps: Benefits and drawbacks of the ‘full’ cavitation model[J]. Engineering Applications of Computational Fluid Mechanics, 2016, 10(1): 57-71.
|
27 |
SINGHAL A K, ATHAVALE M M, LI H Y, et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124(3): 617-624.
|
28 |
COX A D, CLAYDEN W A. Cavitating flow about a wedge at incidence[J]. Journal of Fluid Mechanics, 1958, 3(6): 615-637.
|
29 |
DING H, VISSER F C, JIANG Y, et al. Demonstration and validation of a 3D CFD simulation tool predicting pump performance and cavitation for industrial applications[J]. Journal of Fluids Engineering, 2011, 133(1): 011101.
|
30 |
魏晓良, 潮群, 陶建峰, 等. 基于LSTM和CNN的高速柱塞泵故障诊断[J]. 航空学报, 2021, 42(3): 423876.
|
|
WEI X L, CHAO Q, TAO J F, et al. Cavitation fault diagnosis method for high-speed plunger pumps based on LSTM and CNN[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 423876 (in Chinese).
|
31 |
CHAO Q, TAO J F, WEI X L, et al. Cavitation intensity recognition for high-speed axial piston pumps using 1-D convolutional neural networks with multi-channel inputs of vibration signals[J]. Alexandria Engineering Journal, 2020, 59(6): 4463-4473.
|